cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A027777 a(n) = 2*(n+1)*binomial(n+2,4).

Original entry on oeis.org

6, 40, 150, 420, 980, 2016, 3780, 6600, 10890, 17160, 26026, 38220, 54600, 76160, 104040, 139536, 184110, 239400, 307230, 389620, 488796, 607200, 747500, 912600, 1105650, 1330056, 1589490, 1887900, 2229520, 2618880, 3060816, 3560480, 4123350, 4755240, 5462310
Offset: 2

Views

Author

Thi Ngoc Dinh (via R. K. Guy)

Keywords

Comments

Number of 7-subsequences of [ 1, n ] with just 2 contiguous pairs.

Crossrefs

Equals second right hand column of A163934. - Johannes W. Meijer, Oct 16 2009
Cf. A006411.

Programs

  • Mathematica
    Table[2(n+1)Binomial[n+2,4],{n,2,35}]  (* Harvey P. Dale, Feb 03 2011 *)

Formula

G.f.: 2*(3+2x)*x^2/(1-x)^6.
a(n) = 2*A006411(n+1).
a(n) = C(n+1, 3)*C(n+2, 2) - Zerinvary Lajos, May 13 2005, corrected by R. J. Mathar, Feb 13 2016
From Amiram Eldar, Jan 28 2022: (Start)
Sum_{n>=2} 1/a(n) = Pi^2 - 29/3.
Sum_{n>=2} (-1)^n/a(n) = Pi^2/2 + 8*log(2) - 31/3. (End)
Previous Showing 11-11 of 11 results.