cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A166050 a(n) = Sum_{i=0..(2n+1)} J(i,12n+7), where J(i,k) is the Jacobi symbol.

Original entry on oeis.org

1, -1, 3, -1, 4, -1, 5, -2, 5, -2, 5, -3, 7, -1, 2, -2, 9, -3, 7, -2, 6, -4, 11, -3, 8, -3, 10, -3, 1, -4, 9, -3, 14, -2, 10, -2, 15, -6, 7, 0, 7, -3, 14, -5, 14, -3, 16, -5, 8, -4, 13, -5, 13, -3, 12, -4, 18, -5, 14, -4, 13, -5, 15, -4, 0, -5, 16, -7, 9, -6, 0, -7, 22, -3, 16, -3
Offset: 0

Views

Author

Antti Karttunen, Oct 13 2009. Erroneous name corrected Oct 20 2009

Keywords

Comments

The height at the 1/6 point of "Jacobi-bridge/path", computed for each odd integer of the form 12n+7.

Crossrefs

Bisections: A166268, A166269 (see conjectures there). Cf. A017605. Scheme-code for jacobi-symbol is given at A165601.

A166405 Sum of those positive i <= 2n+1, for which J(i,2n+1)=-1. Here J(i,k) is the Jacobi symbol.

Original entry on oeis.org

0, 2, 5, 14, 0, 33, 39, 45, 68, 95, 63, 161, 0, 126, 203, 279, 165, 245, 333, 312, 410, 473, 270, 658, 0, 459, 689, 660, 513, 944, 915, 630, 780, 1139, 759, 1491, 1314, 775, 1155, 1738, 0, 1826, 1360, 1479, 1958, 1729, 1395, 2090, 2328, 1485, 2525, 2884
Offset: 0

Views

Author

Antti Karttunen, Oct 21 2009

Keywords

Examples

			For n=5, we get odd number 11 (2*5+1), and J(i,11) = 1,-1,1,1,1,-1,-1,-1,1,-1,0 when i ranges from 1 to 11, J(i,11) obtaining value -1 when i=2, 6, 7, 8 and 10, thus a(5)=33.
		

Crossrefs

A125615(n)=a(A102781(n)). Cf. A166100, A166406-A166408. The cases where a(i)/A005408(i) is not integer seem also to be given by A166101. This is NOT a bisection of A165898. Scheme-code for jacobi-symbol is given at A165601.

Programs

  • Mathematica
    Table[Total@ Select[Range[2n + 1], JacobiSymbol[#, 2n + 1]==-1 &], {n, 0, 100}] (* Indranil Ghosh, Jun 12 2017 *)
  • Python
    from sympy import jacobi_symbol as J
    def a(n): return sum(i for i in range(1, 2*n + 2) if J(i, 2*n + 1)==-1)
    # Indranil Ghosh, Jun 12 2017
Previous Showing 11-12 of 12 results.