cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A235942 Number of positions (cyclic permutations) of circular permutations with exactly one (unspecified) increasing or decreasing modular 3-sequence, with clockwise and counterclockwise traversals counted as distinct.

Original entry on oeis.org

0, 0, 0, 0, 50, 144, 1078, 7936, 66096, 611200, 6248682, 69926976, 850848414, 11187719984, 158122436400, 2390945284096, 38518483536706, 658706393035152, 11918123304961222, 227474585229393600, 4567806759318652080
Offset: 1

Views

Author

Paul J. Campbell, Jan 20 2014, with Joe Marasco and Ashish Vikram

Keywords

References

  • Paul J. Campbell, Circular permutations with exactly one modular run (3-sequence), submitted to Journal of Integer Sequences

Crossrefs

Formula

a(n) = 2*n^2 * A235937(n).
a(n) = n^2 * A235938(n).
a(n) = 2*n * A235939(n).
a(n) = n * A235940(n).
a(n) = 2 * A235941(n).

Extensions

a(20)-a(21) from Alois P. Heinz, Jan 24 2014
Obsolete b-file deleted by N. J. A. Sloane, Jan 05 2019

A165960 Number of permutations of length n without modular 3-sequences.

Original entry on oeis.org

1, 1, 2, 3, 20, 100, 612, 4389, 35688, 325395, 3288490, 36489992, 441093864, 5770007009, 81213878830, 1223895060315, 19662509071056, 335472890422812, 6057979285535388, 115434096553014565, 2314691409652237700, 48723117262650147387, 1074208020519710570054
Offset: 0

Views

Author

Isaac Lambert, Oct 01 2009

Keywords

Comments

Modular 3-sequences are of the following form: i,i+1,i+2, where arithmetic is modulo n.

Examples

			For n=3 the a(3) = 3 solutions are (0,2,1), (1,0,2) and (2,1,0).
		

Crossrefs

Formula

a(n) = n * A165961(n).

Extensions

a(0)-a(2) and a(15)-a(22) from Alois P. Heinz, Apr 14 2021

A372102 Number of permutations of [n] whose non-fixed points are not neighbors.

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 19, 45, 107, 278, 728, 2033, 5749, 17105, 51669, 162674, 520524, 1724329, 5807143, 20146861, 71048431, 257139686, 945626800, 3558489633, 13599579817, 53060155137, 210124405097, 847904374466, 3470756061140, 14453943647561, 61023690771451
Offset: 0

Views

Author

Alois P. Heinz, Apr 18 2024

Keywords

Examples

			a(3) = 2: 123, 321.
a(4) = 4: 1234, 1432, 3214, 4231.
a(5) = 9: 12345, 12543, 14325, 15342, 32145, 32541, 42315, 52143, 52341.
a(6) = 19: 123456, 123654, 125436, 126453, 143256, 143652, 153426, 163254, 163452, 321456, 325416, 326451, 423156, 423651, 521436, 523416, 621453, 623154, 623451.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [2$3, 4][n+1],
          3*a(n-1)+(n-2)*a(n-2)+(n-1)*(a(n-4)-a(n-3)))/2
        end:
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := Sum[Binomial[n + 1 - k, k] * Subfactorial[k], {k, 0, (n + 1)/2}];
    Table[a[n], {n, 0, 30}] (* Peter Luschny, Apr 24 2024 *)

Formula

a(n) = Sum_{j=0..floor((n+1)/2)} A000166(j)*A011973(n+1,j).
a(n) mod 2 = A131735(n+3).
Row sums of A371995(n+1), which are the antidiagonals of A098825. - Peter Luschny, Apr 24 2024
a(n) ~ sqrt(Pi) * exp(sqrt(n/2) - n/2 - 7/8) * n^(n/2 + 1) / 2^((n+3)/2). - Vaclav Kotesovec, Apr 25 2024

A180186 Triangle read by rows: T(n,k) is the number of permutations of [n] starting with 1, having no 3-sequences and having k successions (0 <= k <= floor(n/2)); a succession of a permutation p is a position i such that p(i +1) - p(i) = 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 2, 3, 0, 9, 8, 3, 44, 45, 12, 1, 265, 264, 90, 8, 1854, 1855, 660, 90, 2, 14833, 14832, 5565, 880, 45, 133496, 133497, 51912, 9275, 660, 9, 1334961, 1334960, 533988, 103824, 9275, 264, 14684570, 14684571, 6007320, 1245972, 129780, 5565
Offset: 0

Views

Author

Emeric Deutsch, Sep 06 2010

Keywords

Comments

Row n has 1+floor(n/2) entries.
Sum of entries in row n is A165961(n).
T(n,0) = d(n-1).
Sum_{k>=0} k*T(n,k) = A180187(n).
From Emeric Deutsch, Sep 07 2010: (Start)
T(n,k) is also the number of permutations of [n-1] with k fixed points, no two of them adjacent. Example: T(5,2)=3 because we have 1432, 1324, and 3214.
(End)

Examples

			T(5,2)=3 because we have 12453, 12534, and 14523.
Triangle starts:
    1;
    1;
    0,   1;
    1,   0;
    2,   3,   0;
    9,   8,   3;
   44,  45,  12,  1;
  265, 264,  90,  8;
		

Crossrefs

Programs

  • Maple
    d[0] := 1: for n to 51 do d[n] := n*d[n-1]+(-1)^n end do: a := proc (n, k) if n = 0 and k = 0 then 1 elif k <= (1/2)*n then binomial(n-k, k)*d[n-1-k] else 0 end if end proc: for n from 0 to 12 do seq(a(n, k), k = 0 .. (1/2)*n) end do; # yields sequence in triangular form

Formula

T(n,k) = binomial(n-k,k)*d(n-k-1), where d(j) = A000166(j) are the derangement numbers.
Previous Showing 11-14 of 14 results.