cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A290969 The least positive integer that is a repdigit with length > 2 in exactly n bases.

Original entry on oeis.org

1, 7, 31, 32767, 4095, 435356467, 16777215, 68719476735, 281474976710655
Offset: 0

Views

Author

Bernard Schott, Aug 16 2017

Keywords

Comments

a(10) <= 1152921504606846975 = 2^60 - 1.
a(7) and following terms > 3*10^9. - Giovanni Resta, Aug 16 2017
a(7) <= 2^36-1 and a(8) <= 2^48-1. - Michel Marcus, Aug 17 2017
In fact, we have equality in both cases. - Rémy Sigrist, Aug 21 2017
Except for a(5) = (6^12 - 1) / 5, all the numbers in the data through a(8) are Mersenne numbers A000225. - Bernard Schott, Aug 27 2017

Examples

			a(1) = 7 = 111_2.
a(2) = 31 = 11111_2 = 111_5.
a(3) = 32767 = (R_15)_2 = 77777_8 = (31,31,31)_32.
		

Crossrefs

Extensions

a(7) from Rémy Sigrist, Aug 19 2017
a(8) from Rémy Sigrist, Aug 21 2017

A326706 Numbers m such that beta(m) = tau(m)/2 + k for some k >= 4, where beta(m) is the number of Brazilian representations of m and tau(m) is the number of divisors of m.

Original entry on oeis.org

16777215, 435356467, 1073741823, 68719476735, 1099511627775, 4398046511103, 35184372088831, 281474976710655, 14901161193847656, 18014398509481983
Offset: 1

Views

Author

Bernard Schott, Aug 09 2019

Keywords

Comments

As tau(m) = 2 * (beta(m) - k) is even, the terms of this sequence are not squares.
There are two classes of terms (see array in link and examples):
1) Non-oblong composites which have five or more Brazilian representations with three digits or more, they form a subsequence of A326705. The smallest example is a(1) = 16777215 = M_24.
2) Oblong numbers that have six or more Brazilian representations with three digits or more, they form a subsequence of A309062. The smallest example is a(9) (see 2nd example).
For a(1) to a(10), the numbers k are respectively 5, 4, 5, 6, 5, 5, 4, 7, 4 and 5.
Some Mersenne numbers are terms: M_24 = a(1), M_30 = a(3), M_36 = a(4), M_40 = a(5), M_42 = a(6), M_45 = a(7), M_48 = a(8), M_54 = a(10).

Examples

			One example of each type:
1) Non-oblong with beta"(m) = 5; tau(435356467) = 64 and 435356467 = (6^12 - 1)/5 has exactly five Brazilian representations with three digits or more: R(12)_6 = 777777_36 = (43,43,43)_216 = (259,259,259)_1296 = (31,31,31)_3747 and has 31 representations with 2 digits, so beta(435356467) = 36 and k = 4.
2) Oblong with beta"(m) = 6; tau(14901161193847656) = 768 and 14901161193847656 = (5^24 - 1)/4 = 122070312*122070313 is oblong. The six Brazilian representations with three digits or more of this term are R(24)_5 = 666666666666_25 = (31,31,31,31,31,31,31,31)_125 = (156,156,156,156,156)_625, =(3906,3906,3906,3906)_15625 = (97656,97656,97656)_390625 so beta"(14901161193847656) = 6 and beta(61035156) = (tau(61035156)/2 - 2) + 6 = 388 and k = 4.
		

Crossrefs

Cf. A000005 (tau), A220136 (beta).
Subsequence of A167782, A167783 and A290869.
Cf. A326378 (tau(m)/2 - 2), A326379 (tau(m)/2 - 1), A326380 (tau(m)/2), A326381 (tau(m)/2 + 1), A326382 (tau(m)/2 + 2), A326383 (tau(m)/2 + 3), this sequence (tau(m)/2 + k, k >= 4).
Cf. A291592 (Mersenne numbers).

Programs

  • PARI
    okrepu3(b, target, lim) = {my(k = 3, nb = 0, x); while ((x=(b^k-1)/(b-1)) <= target, if (x==target, nb++); k++); nb; }
    dge3(n, d) = {my(nb=0, ndi, limi); for (i=1, #d, ndi = n/d[i]; limi = sqrtint(ndi); for (k=d[i]+1, limi, nb += okrepu3(k, ndi, limi); ); ); nb; }
    deq2(n, d) = {my(nb=0, nk); for (k=1, #d\2, nk = (n - d[k])/d[k]; if (nk > d[k], nb++); ); nb; }
    beta(n) = {if (n<3, return (0)); my(d=divisors(n)); deq2(n, d) + dge3(n, d) - 1; }
    isok(n) = beta(n) - numdiv(n)/2 > = 4; \\ Michel Marcus, Aug 10 2019
Previous Showing 11-12 of 12 results.