cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A267615 a(n) = 2^n + 11.

Original entry on oeis.org

12, 13, 15, 19, 27, 43, 75, 139, 267, 523, 1035, 2059, 4107, 8203, 16395, 32779, 65547, 131083, 262155, 524299, 1048587, 2097163, 4194315, 8388619, 16777227, 33554443, 67108875, 134217739, 268435467, 536870923, 1073741835, 2147483659, 4294967307, 8589934603, 17179869195, 34359738379
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 18 2016

Keywords

Comments

Recurrence relation b(n) = 3*b(n - 1) - 2*b(n - 2) for n>1, b(0) = k, b(1) = k + 1, gives the closed form b(n) = 2^n + k - 1.

Crossrefs

Cf. sequences with closed form 2^n + k - 1: A168616 (k=-4), A028399 (k=-3), A036563 (k=-2), A000918 (k=-1), A000225 (k=0), A000079 (k=1), A000051 (k=2), A052548 (k=3), A062709 (k=4), A140504 (k=5), A168614 (k=6), A153972 (k=7), A168415 (k=8), A242475 (k=9), A188165 (k=10), A246139 (k=11), this sequence (k=12).
Cf. A156940.

Programs

  • Magma
    [2^n+11: n in [0..30]]; // Vincenzo Librandi, Jan 19 2016
  • Mathematica
    Table[2^n + 11, {n, 0, 35}]
    LinearRecurrence[{3, -2}, {12, 13}, 40] (* Vincenzo Librandi, Jan 19 2016 *)
  • PARI
    a(n) = 2^n + 11; \\ Altug Alkan, Jan 18 2016
    

Formula

G.f.: (12 - 23*x)/(1 - 3*x + 2*x^2).
a(n) = 3*a(n - 1) - 2*a(n - 2) for n>1, a(0)=12, a(1)=13.
a(n) = A000079(n) + A010850(n).
Sum_{n>=0} 1/a(n) = 0.367971714327125...
Lim_{n->oo} a(n + 1)/a(n) = 2.
E.g.f.: exp(2*x) + 11*exp(x). - Elmo R. Oliveira, Nov 08 2023

A376324 (1/6) times obverse convolution (4)**(2^n + 1); see Comments.

Original entry on oeis.org

1, 7, 63, 819, 17199, 636363, 43909047, 5839903251, 1524214748511, 788019024980187, 810871576704612423, 1664719346974569304419, 6827014041942708717422319, 55961034101804383356710748843, 917145387894472038833132462787927
Offset: 0

Views

Author

Clark Kimberling, Sep 20 2024

Keywords

References

  • See A374848 for the definition of obverse convolution and a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    s[n_] := 4; t[n_] := 2^n + 1;
    u[n_] := (1/6) Product[s[k] + t[n - k], {k, 0, n}];
    Table[u[n], {n, 0, 20}]
    (* or *)
    Table[2^(n*(n+1)/2 - 1) * QPochhammer[-5, 1/2, n+1]/3, {n, 0, 15}] (* Vaclav Kotesovec, Sep 20 2024 *)

Formula

a(n) = a(n-1)*A168614(n) for n>=1.
Previous Showing 11-12 of 12 results.