cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-49 of 49 results.

A170275 Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^41 = I.

Original entry on oeis.org

1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128906250, 2479553222656250, 61988830566406250, 1549720764160156250, 38743019104003906250, 968575477600097656250
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170745, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 +
2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 +
2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 +
2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 +
2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(300*t^41 - 24*t^40 - 24*t^39 - 24*t^38 - 24*t^37 - 24*t^36 - 24*t^35
- 24*t^34 - 24*t^33 - 24*t^32 - 24*t^31 - 24*t^30 - 24*t^29 - 24*t^28 -
24*t^27 - 24*t^26 - 24*t^25 - 24*t^24 - 24*t^23 - 24*t^22 - 24*t^21 -
24*t^20 - 24*t^19 - 24*t^18 - 24*t^17 - 24*t^16 - 24*t^15 - 24*t^14 -
24*t^13 - 24*t^12 - 24*t^11 - 24*t^10 - 24*t^9 - 24*t^8 - 24*t^7 -
24*t^6 - 24*t^5 - 24*t^4 - 24*t^3 - 24*t^2 - 24*t + 1)

A170323 Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^42 = I.

Original entry on oeis.org

1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128906250, 2479553222656250, 61988830566406250, 1549720764160156250, 38743019104003906250, 968575477600097656250
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170745, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 +
2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(300*t^42 - 24*t^41 - 24*t^40 - 24*t^39 - 24*t^38 - 24*t^37 -
24*t^36 - 24*t^35 - 24*t^34 - 24*t^33 - 24*t^32 - 24*t^31 - 24*t^30 -
24*t^29 - 24*t^28 - 24*t^27 - 24*t^26 - 24*t^25 - 24*t^24 - 24*t^23 -
24*t^22 - 24*t^21 - 24*t^20 - 24*t^19 - 24*t^18 - 24*t^17 - 24*t^16 -
24*t^15 - 24*t^14 - 24*t^13 - 24*t^12 - 24*t^11 - 24*t^10 - 24*t^9 -
24*t^8 - 24*t^7 - 24*t^6 - 24*t^5 - 24*t^4 - 24*t^3 - 24*t^2 - 24*t + 1)

A170371 Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^43 = I.

Original entry on oeis.org

1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128906250, 2479553222656250, 61988830566406250, 1549720764160156250, 38743019104003906250, 968575477600097656250
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170745, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 +
2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 +
2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 +
2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 +
2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3
+ 2*t^2 + 2*t + 1)/(300*t^43 - 24*t^42 - 24*t^41 - 24*t^40 - 24*t^39 -
24*t^38 - 24*t^37 - 24*t^36 - 24*t^35 - 24*t^34 - 24*t^33 - 24*t^32 -
24*t^31 - 24*t^30 - 24*t^29 - 24*t^28 - 24*t^27 - 24*t^26 - 24*t^25 -
24*t^24 - 24*t^23 - 24*t^22 - 24*t^21 - 24*t^20 - 24*t^19 - 24*t^18 -
24*t^17 - 24*t^16 - 24*t^15 - 24*t^14 - 24*t^13 - 24*t^12 - 24*t^11 -
24*t^10 - 24*t^9 - 24*t^8 - 24*t^7 - 24*t^6 - 24*t^5 - 24*t^4 - 24*t^3 -
24*t^2 - 24*t + 1)

A170419 Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^44 = I.

Original entry on oeis.org

1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128906250, 2479553222656250, 61988830566406250, 1549720764160156250, 38743019104003906250, 968575477600097656250
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170745, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 +
2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 +
2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 +
2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 +
2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4
+ 2*t^3 + 2*t^2 + 2*t + 1)/(300*t^44 - 24*t^43 - 24*t^42 - 24*t^41 -
24*t^40 - 24*t^39 - 24*t^38 - 24*t^37 - 24*t^36 - 24*t^35 - 24*t^34 -
24*t^33 - 24*t^32 - 24*t^31 - 24*t^30 - 24*t^29 - 24*t^28 - 24*t^27 -
24*t^26 - 24*t^25 - 24*t^24 - 24*t^23 - 24*t^22 - 24*t^21 - 24*t^20 -
24*t^19 - 24*t^18 - 24*t^17 - 24*t^16 - 24*t^15 - 24*t^14 - 24*t^13 -
24*t^12 - 24*t^11 - 24*t^10 - 24*t^9 - 24*t^8 - 24*t^7 - 24*t^6 - 24*t^5
- 24*t^4 - 24*t^3 - 24*t^2 - 24*t + 1)

A170467 Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^45 = I.

Original entry on oeis.org

1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128906250, 2479553222656250, 61988830566406250, 1549720764160156250, 38743019104003906250, 968575477600097656250
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170745, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 +
2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 +
2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 +
2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 +
2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 +
2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(300*t^45 - 24*t^44 - 24*t^43 -
24*t^42 - 24*t^41 - 24*t^40 - 24*t^39 - 24*t^38 - 24*t^37 - 24*t^36 -
24*t^35 - 24*t^34 - 24*t^33 - 24*t^32 - 24*t^31 - 24*t^30 - 24*t^29 -
24*t^28 - 24*t^27 - 24*t^26 - 24*t^25 - 24*t^24 - 24*t^23 - 24*t^22 -
24*t^21 - 24*t^20 - 24*t^19 - 24*t^18 - 24*t^17 - 24*t^16 - 24*t^15 -
24*t^14 - 24*t^13 - 24*t^12 - 24*t^11 - 24*t^10 - 24*t^9 - 24*t^8 -
24*t^7 - 24*t^6 - 24*t^5 - 24*t^4 - 24*t^3 - 24*t^2 - 24*t + 1)

A170515 Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^46 = I.

Original entry on oeis.org

1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128906250, 2479553222656250, 61988830566406250, 1549720764160156250, 38743019104003906250, 968575477600097656250
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170745, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    With[{num=Total[2t^Range[45]]+t^46+1,den=Total[-24 t^Range[45]]+ 330t^46+ 1},CoefficientList[Series[num/den,{t,0,20}],t]] (* Harvey P. Dale, Jul 04 2012 *)

Formula

G.f. (t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 +
2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 +
2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 +
2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 +
2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 +
2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(300*t^46 - 24*t^45 -
24*t^44 - 24*t^43 - 24*t^42 - 24*t^41 - 24*t^40 - 24*t^39 - 24*t^38 -
24*t^37 - 24*t^36 - 24*t^35 - 24*t^34 - 24*t^33 - 24*t^32 - 24*t^31 -
24*t^30 - 24*t^29 - 24*t^28 - 24*t^27 - 24*t^26 - 24*t^25 - 24*t^24 -
24*t^23 - 24*t^22 - 24*t^21 - 24*t^20 - 24*t^19 - 24*t^18 - 24*t^17 -
24*t^16 - 24*t^15 - 24*t^14 - 24*t^13 - 24*t^12 - 24*t^11 - 24*t^10 -
24*t^9 - 24*t^8 - 24*t^7 - 24*t^6 - 24*t^5 - 24*t^4 - 24*t^3 - 24*t^2 -
24*t + 1)

A170563 Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^47 = I.

Original entry on oeis.org

1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128906250, 2479553222656250, 61988830566406250, 1549720764160156250, 38743019104003906250, 968575477600097656250
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170745, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 +
2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 +
2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 +
2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 +
2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 +
2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(300*t^47 -
24*t^46 - 24*t^45 - 24*t^44 - 24*t^43 - 24*t^42 - 24*t^41 - 24*t^40 -
24*t^39 - 24*t^38 - 24*t^37 - 24*t^36 - 24*t^35 - 24*t^34 - 24*t^33 -
24*t^32 - 24*t^31 - 24*t^30 - 24*t^29 - 24*t^28 - 24*t^27 - 24*t^26 -
24*t^25 - 24*t^24 - 24*t^23 - 24*t^22 - 24*t^21 - 24*t^20 - 24*t^19 -
24*t^18 - 24*t^17 - 24*t^16 - 24*t^15 - 24*t^14 - 24*t^13 - 24*t^12 -
24*t^11 - 24*t^10 - 24*t^9 - 24*t^8 - 24*t^7 - 24*t^6 - 24*t^5 - 24*t^4
- 24*t^3 - 24*t^2 - 24*t + 1)

A170611 Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^48 = I.

Original entry on oeis.org

1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128906250, 2479553222656250, 61988830566406250, 1549720764160156250, 38743019104003906250, 968575477600097656250
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170745, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    With[{num=Total[2t^Range[47]]+t^48+1,den=Total[-24 t^Range[47]]+ 300t^48+ 1},CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Nov 30 2012 *)

Formula

G.f. (t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 +
2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 +
2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 +
2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 +
2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 +
2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(300*t^48 - 24*t^47 - 24*t^46 - 24*t^45 - 24*t^44 - 24*t^43 - 24*t^42
- 24*t^41 - 24*t^40 - 24*t^39 - 24*t^38 - 24*t^37 - 24*t^36 - 24*t^35 -
24*t^34 - 24*t^33 - 24*t^32 - 24*t^31 - 24*t^30 - 24*t^29 - 24*t^28 -
24*t^27 - 24*t^26 - 24*t^25 - 24*t^24 - 24*t^23 - 24*t^22 - 24*t^21 -
24*t^20 - 24*t^19 - 24*t^18 - 24*t^17 - 24*t^16 - 24*t^15 - 24*t^14 -
24*t^13 - 24*t^12 - 24*t^11 - 24*t^10 - 24*t^9 - 24*t^8 - 24*t^7 -
24*t^6 - 24*t^5 - 24*t^4 - 24*t^3 - 24*t^2 - 24*t + 1)

A170659 Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^49 = I.

Original entry on oeis.org

1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128906250, 2479553222656250, 61988830566406250, 1549720764160156250, 38743019104003906250, 968575477600097656250
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170745, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^49 + 2*t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 +
2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 +
2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 +
2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 +
2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 +
2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(300*t^49 - 24*t^48 - 24*t^47 - 24*t^46 - 24*t^45 - 24*t^44 - 24*t^43
- 24*t^42 - 24*t^41 - 24*t^40 - 24*t^39 - 24*t^38 - 24*t^37 - 24*t^36 -
24*t^35 - 24*t^34 - 24*t^33 - 24*t^32 - 24*t^31 - 24*t^30 - 24*t^29 -
24*t^28 - 24*t^27 - 24*t^26 - 24*t^25 - 24*t^24 - 24*t^23 - 24*t^22 -
24*t^21 - 24*t^20 - 24*t^19 - 24*t^18 - 24*t^17 - 24*t^16 - 24*t^15 -
24*t^14 - 24*t^13 - 24*t^12 - 24*t^11 - 24*t^10 - 24*t^9 - 24*t^8 -
24*t^7 - 24*t^6 - 24*t^5 - 24*t^4 - 24*t^3 - 24*t^2 - 24*t + 1)
Previous Showing 41-49 of 49 results.