cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-49 of 49 results.

A170278 Number of reduced words of length n in Coxeter group on 29 generators S_i with relations (S_i)^2 = (S_i S_j)^41 = I.

Original entry on oeis.org

1, 29, 812, 22736, 636608, 17825024, 499100672, 13974818816, 391294926848, 10956257951744, 306775222648832, 8589706234167296, 240511774556684288, 6734329687587160064, 188561231252440481792, 5279714475068333490176
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170748, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 +
2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 +
2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 +
2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 +
2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(378*t^41 - 27*t^40 - 27*t^39 - 27*t^38 - 27*t^37 - 27*t^36 - 27*t^35
- 27*t^34 - 27*t^33 - 27*t^32 - 27*t^31 - 27*t^30 - 27*t^29 - 27*t^28 -
27*t^27 - 27*t^26 - 27*t^25 - 27*t^24 - 27*t^23 - 27*t^22 - 27*t^21 -
27*t^20 - 27*t^19 - 27*t^18 - 27*t^17 - 27*t^16 - 27*t^15 - 27*t^14 -
27*t^13 - 27*t^12 - 27*t^11 - 27*t^10 - 27*t^9 - 27*t^8 - 27*t^7 -
27*t^6 - 27*t^5 - 27*t^4 - 27*t^3 - 27*t^2 - 27*t + 1)

A170326 Number of reduced words of length n in Coxeter group on 29 generators S_i with relations (S_i)^2 = (S_i S_j)^42 = I.

Original entry on oeis.org

1, 29, 812, 22736, 636608, 17825024, 499100672, 13974818816, 391294926848, 10956257951744, 306775222648832, 8589706234167296, 240511774556684288, 6734329687587160064, 188561231252440481792, 5279714475068333490176
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170748, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 +
2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(378*t^42 - 27*t^41 - 27*t^40 - 27*t^39 - 27*t^38 - 27*t^37 -
27*t^36 - 27*t^35 - 27*t^34 - 27*t^33 - 27*t^32 - 27*t^31 - 27*t^30 -
27*t^29 - 27*t^28 - 27*t^27 - 27*t^26 - 27*t^25 - 27*t^24 - 27*t^23 -
27*t^22 - 27*t^21 - 27*t^20 - 27*t^19 - 27*t^18 - 27*t^17 - 27*t^16 -
27*t^15 - 27*t^14 - 27*t^13 - 27*t^12 - 27*t^11 - 27*t^10 - 27*t^9 -
27*t^8 - 27*t^7 - 27*t^6 - 27*t^5 - 27*t^4 - 27*t^3 - 27*t^2 - 27*t + 1)

A170374 Number of reduced words of length n in Coxeter group on 29 generators S_i with relations (S_i)^2 = (S_i S_j)^43 = I.

Original entry on oeis.org

1, 29, 812, 22736, 636608, 17825024, 499100672, 13974818816, 391294926848, 10956257951744, 306775222648832, 8589706234167296, 240511774556684288, 6734329687587160064, 188561231252440481792, 5279714475068333490176
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170748, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 +
2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 +
2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 +
2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 +
2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3
+ 2*t^2 + 2*t + 1)/(378*t^43 - 27*t^42 - 27*t^41 - 27*t^40 - 27*t^39 -
27*t^38 - 27*t^37 - 27*t^36 - 27*t^35 - 27*t^34 - 27*t^33 - 27*t^32 -
27*t^31 - 27*t^30 - 27*t^29 - 27*t^28 - 27*t^27 - 27*t^26 - 27*t^25 -
27*t^24 - 27*t^23 - 27*t^22 - 27*t^21 - 27*t^20 - 27*t^19 - 27*t^18 -
27*t^17 - 27*t^16 - 27*t^15 - 27*t^14 - 27*t^13 - 27*t^12 - 27*t^11 -
27*t^10 - 27*t^9 - 27*t^8 - 27*t^7 - 27*t^6 - 27*t^5 - 27*t^4 - 27*t^3 -
27*t^2 - 27*t + 1)

A170422 Number of reduced words of length n in Coxeter group on 29 generators S_i with relations (S_i)^2 = (S_i S_j)^44 = I.

Original entry on oeis.org

1, 29, 812, 22736, 636608, 17825024, 499100672, 13974818816, 391294926848, 10956257951744, 306775222648832, 8589706234167296, 240511774556684288, 6734329687587160064, 188561231252440481792, 5279714475068333490176
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170748, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 +
2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 +
2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 +
2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 +
2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4
+ 2*t^3 + 2*t^2 + 2*t + 1)/(378*t^44 - 27*t^43 - 27*t^42 - 27*t^41 -
27*t^40 - 27*t^39 - 27*t^38 - 27*t^37 - 27*t^36 - 27*t^35 - 27*t^34 -
27*t^33 - 27*t^32 - 27*t^31 - 27*t^30 - 27*t^29 - 27*t^28 - 27*t^27 -
27*t^26 - 27*t^25 - 27*t^24 - 27*t^23 - 27*t^22 - 27*t^21 - 27*t^20 -
27*t^19 - 27*t^18 - 27*t^17 - 27*t^16 - 27*t^15 - 27*t^14 - 27*t^13 -
27*t^12 - 27*t^11 - 27*t^10 - 27*t^9 - 27*t^8 - 27*t^7 - 27*t^6 - 27*t^5
- 27*t^4 - 27*t^3 - 27*t^2 - 27*t + 1)

A170470 Number of reduced words of length n in Coxeter group on 29 generators S_i with relations (S_i)^2 = (S_i S_j)^45 = I.

Original entry on oeis.org

1, 29, 812, 22736, 636608, 17825024, 499100672, 13974818816, 391294926848, 10956257951744, 306775222648832, 8589706234167296, 240511774556684288, 6734329687587160064, 188561231252440481792, 5279714475068333490176
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170748, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 +
2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 +
2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 +
2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 +
2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 +
2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(378*t^45 - 27*t^44 - 27*t^43 -
27*t^42 - 27*t^41 - 27*t^40 - 27*t^39 - 27*t^38 - 27*t^37 - 27*t^36 -
27*t^35 - 27*t^34 - 27*t^33 - 27*t^32 - 27*t^31 - 27*t^30 - 27*t^29 -
27*t^28 - 27*t^27 - 27*t^26 - 27*t^25 - 27*t^24 - 27*t^23 - 27*t^22 -
27*t^21 - 27*t^20 - 27*t^19 - 27*t^18 - 27*t^17 - 27*t^16 - 27*t^15 -
27*t^14 - 27*t^13 - 27*t^12 - 27*t^11 - 27*t^10 - 27*t^9 - 27*t^8 -
27*t^7 - 27*t^6 - 27*t^5 - 27*t^4 - 27*t^3 - 27*t^2 - 27*t + 1)

A170518 Number of reduced words of length n in Coxeter group on 29 generators S_i with relations (S_i)^2 = (S_i S_j)^46 = I.

Original entry on oeis.org

1, 29, 812, 22736, 636608, 17825024, 499100672, 13974818816, 391294926848, 10956257951744, 306775222648832, 8589706234167296, 240511774556684288, 6734329687587160064, 188561231252440481792, 5279714475068333490176
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170748, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 +
2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 +
2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 +
2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 +
2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 +
2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(378*t^46 - 27*t^45 -
27*t^44 - 27*t^43 - 27*t^42 - 27*t^41 - 27*t^40 - 27*t^39 - 27*t^38 -
27*t^37 - 27*t^36 - 27*t^35 - 27*t^34 - 27*t^33 - 27*t^32 - 27*t^31 -
27*t^30 - 27*t^29 - 27*t^28 - 27*t^27 - 27*t^26 - 27*t^25 - 27*t^24 -
27*t^23 - 27*t^22 - 27*t^21 - 27*t^20 - 27*t^19 - 27*t^18 - 27*t^17 -
27*t^16 - 27*t^15 - 27*t^14 - 27*t^13 - 27*t^12 - 27*t^11 - 27*t^10 -
27*t^9 - 27*t^8 - 27*t^7 - 27*t^6 - 27*t^5 - 27*t^4 - 27*t^3 - 27*t^2 -
27*t + 1)

A170566 Number of reduced words of length n in Coxeter group on 29 generators S_i with relations (S_i)^2 = (S_i S_j)^47 = I.

Original entry on oeis.org

1, 29, 812, 22736, 636608, 17825024, 499100672, 13974818816, 391294926848, 10956257951744, 306775222648832, 8589706234167296, 240511774556684288, 6734329687587160064, 188561231252440481792, 5279714475068333490176
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170748, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 +
2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 +
2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 +
2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 +
2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 +
2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(378*t^47 -
27*t^46 - 27*t^45 - 27*t^44 - 27*t^43 - 27*t^42 - 27*t^41 - 27*t^40 -
27*t^39 - 27*t^38 - 27*t^37 - 27*t^36 - 27*t^35 - 27*t^34 - 27*t^33 -
27*t^32 - 27*t^31 - 27*t^30 - 27*t^29 - 27*t^28 - 27*t^27 - 27*t^26 -
27*t^25 - 27*t^24 - 27*t^23 - 27*t^22 - 27*t^21 - 27*t^20 - 27*t^19 -
27*t^18 - 27*t^17 - 27*t^16 - 27*t^15 - 27*t^14 - 27*t^13 - 27*t^12 -
27*t^11 - 27*t^10 - 27*t^9 - 27*t^8 - 27*t^7 - 27*t^6 - 27*t^5 - 27*t^4
- 27*t^3 - 27*t^2 - 27*t + 1)

A170614 Number of reduced words of length n in Coxeter group on 29 generators S_i with relations (S_i)^2 = (S_i S_j)^48 = I.

Original entry on oeis.org

1, 29, 812, 22736, 636608, 17825024, 499100672, 13974818816, 391294926848, 10956257951744, 306775222648832, 8589706234167296, 240511774556684288, 6734329687587160064, 188561231252440481792, 5279714475068333490176
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170748, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 +
2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 +
2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 +
2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 +
2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 +
2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(378*t^48 - 27*t^47 - 27*t^46 - 27*t^45 - 27*t^44 - 27*t^43 - 27*t^42
- 27*t^41 - 27*t^40 - 27*t^39 - 27*t^38 - 27*t^37 - 27*t^36 - 27*t^35 -
27*t^34 - 27*t^33 - 27*t^32 - 27*t^31 - 27*t^30 - 27*t^29 - 27*t^28 -
27*t^27 - 27*t^26 - 27*t^25 - 27*t^24 - 27*t^23 - 27*t^22 - 27*t^21 -
27*t^20 - 27*t^19 - 27*t^18 - 27*t^17 - 27*t^16 - 27*t^15 - 27*t^14 -
27*t^13 - 27*t^12 - 27*t^11 - 27*t^10 - 27*t^9 - 27*t^8 - 27*t^7 -
27*t^6 - 27*t^5 - 27*t^4 - 27*t^3 - 27*t^2 - 27*t + 1)

A170662 Number of reduced words of length n in Coxeter group on 29 generators S_i with relations (S_i)^2 = (S_i S_j)^49 = I.

Original entry on oeis.org

1, 29, 812, 22736, 636608, 17825024, 499100672, 13974818816, 391294926848, 10956257951744, 306775222648832, 8589706234167296, 240511774556684288, 6734329687587160064, 188561231252440481792, 5279714475068333490176
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170748, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^49 + 2*t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 +
2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 +
2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 +
2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 +
2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 +
2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(378*t^49 - 27*t^48 - 27*t^47 - 27*t^46 - 27*t^45 - 27*t^44 - 27*t^43
- 27*t^42 - 27*t^41 - 27*t^40 - 27*t^39 - 27*t^38 - 27*t^37 - 27*t^36 -
27*t^35 - 27*t^34 - 27*t^33 - 27*t^32 - 27*t^31 - 27*t^30 - 27*t^29 -
27*t^28 - 27*t^27 - 27*t^26 - 27*t^25 - 27*t^24 - 27*t^23 - 27*t^22 -
27*t^21 - 27*t^20 - 27*t^19 - 27*t^18 - 27*t^17 - 27*t^16 - 27*t^15 -
27*t^14 - 27*t^13 - 27*t^12 - 27*t^11 - 27*t^10 - 27*t^9 - 27*t^8 -
27*t^7 - 27*t^6 - 27*t^5 - 27*t^4 - 27*t^3 - 27*t^2 - 27*t + 1)
Previous Showing 41-49 of 49 results.