cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-49 of 49 results.

A170285 Number of reduced words of length n in Coxeter group on 36 generators S_i with relations (S_i)^2 = (S_i S_j)^41 = I.

Original entry on oeis.org

1, 36, 1260, 44100, 1543500, 54022500, 1890787500, 66177562500, 2316214687500, 81067514062500, 2837362992187500, 99307704726562500, 3475769665429687500, 121651938290039062500, 4257817840151367187500, 149023624405297851562500
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170755, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 +
2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 +
2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 +
2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 +
2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(595*t^41 - 34*t^40 - 34*t^39 - 34*t^38 - 34*t^37 - 34*t^36 - 34*t^35
- 34*t^34 - 34*t^33 - 34*t^32 - 34*t^31 - 34*t^30 - 34*t^29 - 34*t^28 -
34*t^27 - 34*t^26 - 34*t^25 - 34*t^24 - 34*t^23 - 34*t^22 - 34*t^21 -
34*t^20 - 34*t^19 - 34*t^18 - 34*t^17 - 34*t^16 - 34*t^15 - 34*t^14 -
34*t^13 - 34*t^12 - 34*t^11 - 34*t^10 - 34*t^9 - 34*t^8 - 34*t^7 -
34*t^6 - 34*t^5 - 34*t^4 - 34*t^3 - 34*t^2 - 34*t + 1)

A170333 Number of reduced words of length n in Coxeter group on 36 generators S_i with relations (S_i)^2 = (S_i S_j)^42 = I.

Original entry on oeis.org

1, 36, 1260, 44100, 1543500, 54022500, 1890787500, 66177562500, 2316214687500, 81067514062500, 2837362992187500, 99307704726562500, 3475769665429687500, 121651938290039062500, 4257817840151367187500, 149023624405297851562500
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170755, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 +
2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(595*t^42 - 34*t^41 - 34*t^40 - 34*t^39 - 34*t^38 - 34*t^37 -
34*t^36 - 34*t^35 - 34*t^34 - 34*t^33 - 34*t^32 - 34*t^31 - 34*t^30 -
34*t^29 - 34*t^28 - 34*t^27 - 34*t^26 - 34*t^25 - 34*t^24 - 34*t^23 -
34*t^22 - 34*t^21 - 34*t^20 - 34*t^19 - 34*t^18 - 34*t^17 - 34*t^16 -
34*t^15 - 34*t^14 - 34*t^13 - 34*t^12 - 34*t^11 - 34*t^10 - 34*t^9 -
34*t^8 - 34*t^7 - 34*t^6 - 34*t^5 - 34*t^4 - 34*t^3 - 34*t^2 - 34*t + 1)

A170381 Number of reduced words of length n in Coxeter group on 36 generators S_i with relations (S_i)^2 = (S_i S_j)^43 = I.

Original entry on oeis.org

1, 36, 1260, 44100, 1543500, 54022500, 1890787500, 66177562500, 2316214687500, 81067514062500, 2837362992187500, 99307704726562500, 3475769665429687500, 121651938290039062500, 4257817840151367187500, 149023624405297851562500
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170755, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 +
2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 +
2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 +
2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 +
2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3
+ 2*t^2 + 2*t + 1)/(595*t^43 - 34*t^42 - 34*t^41 - 34*t^40 - 34*t^39 -
34*t^38 - 34*t^37 - 34*t^36 - 34*t^35 - 34*t^34 - 34*t^33 - 34*t^32 -
34*t^31 - 34*t^30 - 34*t^29 - 34*t^28 - 34*t^27 - 34*t^26 - 34*t^25 -
34*t^24 - 34*t^23 - 34*t^22 - 34*t^21 - 34*t^20 - 34*t^19 - 34*t^18 -
34*t^17 - 34*t^16 - 34*t^15 - 34*t^14 - 34*t^13 - 34*t^12 - 34*t^11 -
34*t^10 - 34*t^9 - 34*t^8 - 34*t^7 - 34*t^6 - 34*t^5 - 34*t^4 - 34*t^3 -
34*t^2 - 34*t + 1)

A170429 Number of reduced words of length n in Coxeter group on 36 generators S_i with relations (S_i)^2 = (S_i S_j)^44 = I.

Original entry on oeis.org

1, 36, 1260, 44100, 1543500, 54022500, 1890787500, 66177562500, 2316214687500, 81067514062500, 2837362992187500, 99307704726562500, 3475769665429687500, 121651938290039062500, 4257817840151367187500, 149023624405297851562500
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170755, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 +
2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 +
2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 +
2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 +
2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4
+ 2*t^3 + 2*t^2 + 2*t + 1)/(595*t^44 - 34*t^43 - 34*t^42 - 34*t^41 -
34*t^40 - 34*t^39 - 34*t^38 - 34*t^37 - 34*t^36 - 34*t^35 - 34*t^34 -
34*t^33 - 34*t^32 - 34*t^31 - 34*t^30 - 34*t^29 - 34*t^28 - 34*t^27 -
34*t^26 - 34*t^25 - 34*t^24 - 34*t^23 - 34*t^22 - 34*t^21 - 34*t^20 -
34*t^19 - 34*t^18 - 34*t^17 - 34*t^16 - 34*t^15 - 34*t^14 - 34*t^13 -
34*t^12 - 34*t^11 - 34*t^10 - 34*t^9 - 34*t^8 - 34*t^7 - 34*t^6 - 34*t^5
- 34*t^4 - 34*t^3 - 34*t^2 - 34*t + 1)

A170477 Number of reduced words of length n in Coxeter group on 36 generators S_i with relations (S_i)^2 = (S_i S_j)^45 = I.

Original entry on oeis.org

1, 36, 1260, 44100, 1543500, 54022500, 1890787500, 66177562500, 2316214687500, 81067514062500, 2837362992187500, 99307704726562500, 3475769665429687500, 121651938290039062500, 4257817840151367187500, 149023624405297851562500
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170755, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 +
2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 +
2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 +
2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 +
2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 +
2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(595*t^45 - 34*t^44 - 34*t^43 -
34*t^42 - 34*t^41 - 34*t^40 - 34*t^39 - 34*t^38 - 34*t^37 - 34*t^36 -
34*t^35 - 34*t^34 - 34*t^33 - 34*t^32 - 34*t^31 - 34*t^30 - 34*t^29 -
34*t^28 - 34*t^27 - 34*t^26 - 34*t^25 - 34*t^24 - 34*t^23 - 34*t^22 -
34*t^21 - 34*t^20 - 34*t^19 - 34*t^18 - 34*t^17 - 34*t^16 - 34*t^15 -
34*t^14 - 34*t^13 - 34*t^12 - 34*t^11 - 34*t^10 - 34*t^9 - 34*t^8 -
34*t^7 - 34*t^6 - 34*t^5 - 34*t^4 - 34*t^3 - 34*t^2 - 34*t + 1)

A170525 Number of reduced words of length n in Coxeter group on 36 generators S_i with relations (S_i)^2 = (S_i S_j)^46 = I.

Original entry on oeis.org

1, 36, 1260, 44100, 1543500, 54022500, 1890787500, 66177562500, 2316214687500, 81067514062500, 2837362992187500, 99307704726562500, 3475769665429687500, 121651938290039062500, 4257817840151367187500, 149023624405297851562500
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170755, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    With[{num=Total[2t^Range[45]]+t^46+1,den=Total[-34 t^Range[45]]+ 595t^46+ 1},CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Sep 22 2011 *)

Formula

G.f. (t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 +
2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 +
2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 +
2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 +
2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 +
2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(595*t^46 - 34*t^45 -
34*t^44 - 34*t^43 - 34*t^42 - 34*t^41 - 34*t^40 - 34*t^39 - 34*t^38 -
34*t^37 - 34*t^36 - 34*t^35 - 34*t^34 - 34*t^33 - 34*t^32 - 34*t^31 -
34*t^30 - 34*t^29 - 34*t^28 - 34*t^27 - 34*t^26 - 34*t^25 - 34*t^24 -
34*t^23 - 34*t^22 - 34*t^21 - 34*t^20 - 34*t^19 - 34*t^18 - 34*t^17 -
34*t^16 - 34*t^15 - 34*t^14 - 34*t^13 - 34*t^12 - 34*t^11 - 34*t^10 -
34*t^9 - 34*t^8 - 34*t^7 - 34*t^6 - 34*t^5 - 34*t^4 - 34*t^3 - 34*t^2 -
34*t + 1)

A170573 Number of reduced words of length n in Coxeter group on 36 generators S_i with relations (S_i)^2 = (S_i S_j)^47 = I.

Original entry on oeis.org

1, 36, 1260, 44100, 1543500, 54022500, 1890787500, 66177562500, 2316214687500, 81067514062500, 2837362992187500, 99307704726562500, 3475769665429687500, 121651938290039062500, 4257817840151367187500, 149023624405297851562500
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170755, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    With[{num=Total[2t^Range[46]]+t^47+1,den=Total[-34 t^Range[46]]+ 595t^47+ 1}, CoefficientList[Series[num/den,{t,0,20}],t]] (* Harvey P. Dale, Sep 10 2011 *)

Formula

G.f. (t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 +
2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 +
2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 +
2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 +
2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 +
2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(595*t^47 -
34*t^46 - 34*t^45 - 34*t^44 - 34*t^43 - 34*t^42 - 34*t^41 - 34*t^40 -
34*t^39 - 34*t^38 - 34*t^37 - 34*t^36 - 34*t^35 - 34*t^34 - 34*t^33 -
34*t^32 - 34*t^31 - 34*t^30 - 34*t^29 - 34*t^28 - 34*t^27 - 34*t^26 -
34*t^25 - 34*t^24 - 34*t^23 - 34*t^22 - 34*t^21 - 34*t^20 - 34*t^19 -
34*t^18 - 34*t^17 - 34*t^16 - 34*t^15 - 34*t^14 - 34*t^13 - 34*t^12 -
34*t^11 - 34*t^10 - 34*t^9 - 34*t^8 - 34*t^7 - 34*t^6 - 34*t^5 - 34*t^4
- 34*t^3 - 34*t^2 - 34*t + 1)

A170621 Number of reduced words of length n in Coxeter group on 36 generators S_i with relations (S_i)^2 = (S_i S_j)^48 = I.

Original entry on oeis.org

1, 36, 1260, 44100, 1543500, 54022500, 1890787500, 66177562500, 2316214687500, 81067514062500, 2837362992187500, 99307704726562500, 3475769665429687500, 121651938290039062500, 4257817840151367187500, 149023624405297851562500
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170755, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 +
2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 +
2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 +
2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 +
2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 +
2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(595*t^48 - 34*t^47 - 34*t^46 - 34*t^45 - 34*t^44 - 34*t^43 - 34*t^42
- 34*t^41 - 34*t^40 - 34*t^39 - 34*t^38 - 34*t^37 - 34*t^36 - 34*t^35 -
34*t^34 - 34*t^33 - 34*t^32 - 34*t^31 - 34*t^30 - 34*t^29 - 34*t^28 -
34*t^27 - 34*t^26 - 34*t^25 - 34*t^24 - 34*t^23 - 34*t^22 - 34*t^21 -
34*t^20 - 34*t^19 - 34*t^18 - 34*t^17 - 34*t^16 - 34*t^15 - 34*t^14 -
34*t^13 - 34*t^12 - 34*t^11 - 34*t^10 - 34*t^9 - 34*t^8 - 34*t^7 -
34*t^6 - 34*t^5 - 34*t^4 - 34*t^3 - 34*t^2 - 34*t + 1)

A170669 Number of reduced words of length n in Coxeter group on 36 generators S_i with relations (S_i)^2 = (S_i S_j)^49 = I.

Original entry on oeis.org

1, 36, 1260, 44100, 1543500, 54022500, 1890787500, 66177562500, 2316214687500, 81067514062500, 2837362992187500, 99307704726562500, 3475769665429687500, 121651938290039062500, 4257817840151367187500, 149023624405297851562500
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170755, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^49 + 2*t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 +
2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 +
2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 +
2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 +
2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 +
2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(595*t^49 - 34*t^48 - 34*t^47 - 34*t^46 - 34*t^45 - 34*t^44 - 34*t^43
- 34*t^42 - 34*t^41 - 34*t^40 - 34*t^39 - 34*t^38 - 34*t^37 - 34*t^36 -
34*t^35 - 34*t^34 - 34*t^33 - 34*t^32 - 34*t^31 - 34*t^30 - 34*t^29 -
34*t^28 - 34*t^27 - 34*t^26 - 34*t^25 - 34*t^24 - 34*t^23 - 34*t^22 -
34*t^21 - 34*t^20 - 34*t^19 - 34*t^18 - 34*t^17 - 34*t^16 - 34*t^15 -
34*t^14 - 34*t^13 - 34*t^12 - 34*t^11 - 34*t^10 - 34*t^9 - 34*t^8 -
34*t^7 - 34*t^6 - 34*t^5 - 34*t^4 - 34*t^3 - 34*t^2 - 34*t + 1)
Previous Showing 41-49 of 49 results.