cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-49 of 49 results.

A170286 Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^41 = I.

Original entry on oeis.org

1, 37, 1332, 47952, 1726272, 62145792, 2237248512, 80540946432, 2899474071552, 104381066575872, 3757718396731392, 135277862282330112, 4870003042163884032, 175320109517899825152, 6311523942644393705472
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170756, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 +
2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 +
2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 +
2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 +
2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(630*t^41 - 35*t^40 - 35*t^39 - 35*t^38 - 35*t^37 - 35*t^36 - 35*t^35
- 35*t^34 - 35*t^33 - 35*t^32 - 35*t^31 - 35*t^30 - 35*t^29 - 35*t^28 -
35*t^27 - 35*t^26 - 35*t^25 - 35*t^24 - 35*t^23 - 35*t^22 - 35*t^21 -
35*t^20 - 35*t^19 - 35*t^18 - 35*t^17 - 35*t^16 - 35*t^15 - 35*t^14 -
35*t^13 - 35*t^12 - 35*t^11 - 35*t^10 - 35*t^9 - 35*t^8 - 35*t^7 -
35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 - 35*t^2 - 35*t + 1)

A170334 Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^42 = I.

Original entry on oeis.org

1, 37, 1332, 47952, 1726272, 62145792, 2237248512, 80540946432, 2899474071552, 104381066575872, 3757718396731392, 135277862282330112, 4870003042163884032, 175320109517899825152, 6311523942644393705472
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170756, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    With[{num=Total[2t^Range[41]]+t^42+1,den=Total[-35 t^Range[41]]+630t^42 +1},CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Sep 21 2013 *)

Formula

G.f. (t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 +
2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(630*t^42 - 35*t^41 - 35*t^40 - 35*t^39 - 35*t^38 - 35*t^37 -
35*t^36 - 35*t^35 - 35*t^34 - 35*t^33 - 35*t^32 - 35*t^31 - 35*t^30 -
35*t^29 - 35*t^28 - 35*t^27 - 35*t^26 - 35*t^25 - 35*t^24 - 35*t^23 -
35*t^22 - 35*t^21 - 35*t^20 - 35*t^19 - 35*t^18 - 35*t^17 - 35*t^16 -
35*t^15 - 35*t^14 - 35*t^13 - 35*t^12 - 35*t^11 - 35*t^10 - 35*t^9 -
35*t^8 - 35*t^7 - 35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 - 35*t^2 - 35*t + 1)

A170382 Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^43 = I.

Original entry on oeis.org

1, 37, 1332, 47952, 1726272, 62145792, 2237248512, 80540946432, 2899474071552, 104381066575872, 3757718396731392, 135277862282330112, 4870003042163884032, 175320109517899825152, 6311523942644393705472
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170756, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 +
2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 +
2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 +
2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 +
2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3
+ 2*t^2 + 2*t + 1)/(630*t^43 - 35*t^42 - 35*t^41 - 35*t^40 - 35*t^39 -
35*t^38 - 35*t^37 - 35*t^36 - 35*t^35 - 35*t^34 - 35*t^33 - 35*t^32 -
35*t^31 - 35*t^30 - 35*t^29 - 35*t^28 - 35*t^27 - 35*t^26 - 35*t^25 -
35*t^24 - 35*t^23 - 35*t^22 - 35*t^21 - 35*t^20 - 35*t^19 - 35*t^18 -
35*t^17 - 35*t^16 - 35*t^15 - 35*t^14 - 35*t^13 - 35*t^12 - 35*t^11 -
35*t^10 - 35*t^9 - 35*t^8 - 35*t^7 - 35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 -
35*t^2 - 35*t + 1)

A170430 Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^44 = I.

Original entry on oeis.org

1, 37, 1332, 47952, 1726272, 62145792, 2237248512, 80540946432, 2899474071552, 104381066575872, 3757718396731392, 135277862282330112, 4870003042163884032, 175320109517899825152, 6311523942644393705472
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170756, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 +
2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 +
2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 +
2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 +
2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4
+ 2*t^3 + 2*t^2 + 2*t + 1)/(630*t^44 - 35*t^43 - 35*t^42 - 35*t^41 -
35*t^40 - 35*t^39 - 35*t^38 - 35*t^37 - 35*t^36 - 35*t^35 - 35*t^34 -
35*t^33 - 35*t^32 - 35*t^31 - 35*t^30 - 35*t^29 - 35*t^28 - 35*t^27 -
35*t^26 - 35*t^25 - 35*t^24 - 35*t^23 - 35*t^22 - 35*t^21 - 35*t^20 -
35*t^19 - 35*t^18 - 35*t^17 - 35*t^16 - 35*t^15 - 35*t^14 - 35*t^13 -
35*t^12 - 35*t^11 - 35*t^10 - 35*t^9 - 35*t^8 - 35*t^7 - 35*t^6 - 35*t^5
- 35*t^4 - 35*t^3 - 35*t^2 - 35*t + 1)

A170478 Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^45 = I.

Original entry on oeis.org

1, 37, 1332, 47952, 1726272, 62145792, 2237248512, 80540946432, 2899474071552, 104381066575872, 3757718396731392, 135277862282330112, 4870003042163884032, 175320109517899825152, 6311523942644393705472
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170756, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    With[{num=Total[2t^Range[44]]+t^45+1,den=Total[-35 t^Range[44]]+630t^45+ 1},CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Oct 14 2013 *)

Formula

G.f. (t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 +
2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 +
2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 +
2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 +
2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 +
2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(630*t^45 - 35*t^44 - 35*t^43 -
35*t^42 - 35*t^41 - 35*t^40 - 35*t^39 - 35*t^38 - 35*t^37 - 35*t^36 -
35*t^35 - 35*t^34 - 35*t^33 - 35*t^32 - 35*t^31 - 35*t^30 - 35*t^29 -
35*t^28 - 35*t^27 - 35*t^26 - 35*t^25 - 35*t^24 - 35*t^23 - 35*t^22 -
35*t^21 - 35*t^20 - 35*t^19 - 35*t^18 - 35*t^17 - 35*t^16 - 35*t^15 -
35*t^14 - 35*t^13 - 35*t^12 - 35*t^11 - 35*t^10 - 35*t^9 - 35*t^8 -
35*t^7 - 35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 - 35*t^2 - 35*t + 1)

A170526 Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^46 = I.

Original entry on oeis.org

1, 37, 1332, 47952, 1726272, 62145792, 2237248512, 80540946432, 2899474071552, 104381066575872, 3757718396731392, 135277862282330112, 4870003042163884032, 175320109517899825152, 6311523942644393705472
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170756, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 +
2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 +
2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 +
2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 +
2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 +
2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(630*t^46 - 35*t^45 -
35*t^44 - 35*t^43 - 35*t^42 - 35*t^41 - 35*t^40 - 35*t^39 - 35*t^38 -
35*t^37 - 35*t^36 - 35*t^35 - 35*t^34 - 35*t^33 - 35*t^32 - 35*t^31 -
35*t^30 - 35*t^29 - 35*t^28 - 35*t^27 - 35*t^26 - 35*t^25 - 35*t^24 -
35*t^23 - 35*t^22 - 35*t^21 - 35*t^20 - 35*t^19 - 35*t^18 - 35*t^17 -
35*t^16 - 35*t^15 - 35*t^14 - 35*t^13 - 35*t^12 - 35*t^11 - 35*t^10 -
35*t^9 - 35*t^8 - 35*t^7 - 35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 - 35*t^2 -
35*t + 1)

A170574 Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^47 = I.

Original entry on oeis.org

1, 37, 1332, 47952, 1726272, 62145792, 2237248512, 80540946432, 2899474071552, 104381066575872, 3757718396731392, 135277862282330112, 4870003042163884032, 175320109517899825152, 6311523942644393705472
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170756, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 +
2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 +
2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 +
2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 +
2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 +
2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(630*t^47 -
35*t^46 - 35*t^45 - 35*t^44 - 35*t^43 - 35*t^42 - 35*t^41 - 35*t^40 -
35*t^39 - 35*t^38 - 35*t^37 - 35*t^36 - 35*t^35 - 35*t^34 - 35*t^33 -
35*t^32 - 35*t^31 - 35*t^30 - 35*t^29 - 35*t^28 - 35*t^27 - 35*t^26 -
35*t^25 - 35*t^24 - 35*t^23 - 35*t^22 - 35*t^21 - 35*t^20 - 35*t^19 -
35*t^18 - 35*t^17 - 35*t^16 - 35*t^15 - 35*t^14 - 35*t^13 - 35*t^12 -
35*t^11 - 35*t^10 - 35*t^9 - 35*t^8 - 35*t^7 - 35*t^6 - 35*t^5 - 35*t^4
- 35*t^3 - 35*t^2 - 35*t + 1)

A170622 Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^48 = I.

Original entry on oeis.org

1, 37, 1332, 47952, 1726272, 62145792, 2237248512, 80540946432, 2899474071552, 104381066575872, 3757718396731392, 135277862282330112, 4870003042163884032, 175320109517899825152, 6311523942644393705472
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170756, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 +
2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 +
2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 +
2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 +
2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 +
2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(630*t^48 - 35*t^47 - 35*t^46 - 35*t^45 - 35*t^44 - 35*t^43 - 35*t^42
- 35*t^41 - 35*t^40 - 35*t^39 - 35*t^38 - 35*t^37 - 35*t^36 - 35*t^35 -
35*t^34 - 35*t^33 - 35*t^32 - 35*t^31 - 35*t^30 - 35*t^29 - 35*t^28 -
35*t^27 - 35*t^26 - 35*t^25 - 35*t^24 - 35*t^23 - 35*t^22 - 35*t^21 -
35*t^20 - 35*t^19 - 35*t^18 - 35*t^17 - 35*t^16 - 35*t^15 - 35*t^14 -
35*t^13 - 35*t^12 - 35*t^11 - 35*t^10 - 35*t^9 - 35*t^8 - 35*t^7 -
35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 - 35*t^2 - 35*t + 1)

A170670 Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^49 = I.

Original entry on oeis.org

1, 37, 1332, 47952, 1726272, 62145792, 2237248512, 80540946432, 2899474071552, 104381066575872, 3757718396731392, 135277862282330112, 4870003042163884032, 175320109517899825152, 6311523942644393705472
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170756, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^49 + 2*t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 +
2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 +
2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 +
2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 +
2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 +
2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(630*t^49 - 35*t^48 - 35*t^47 - 35*t^46 - 35*t^45 - 35*t^44 - 35*t^43
- 35*t^42 - 35*t^41 - 35*t^40 - 35*t^39 - 35*t^38 - 35*t^37 - 35*t^36 -
35*t^35 - 35*t^34 - 35*t^33 - 35*t^32 - 35*t^31 - 35*t^30 - 35*t^29 -
35*t^28 - 35*t^27 - 35*t^26 - 35*t^25 - 35*t^24 - 35*t^23 - 35*t^22 -
35*t^21 - 35*t^20 - 35*t^19 - 35*t^18 - 35*t^17 - 35*t^16 - 35*t^15 -
35*t^14 - 35*t^13 - 35*t^12 - 35*t^11 - 35*t^10 - 35*t^9 - 35*t^8 -
35*t^7 - 35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 - 35*t^2 - 35*t + 1)
Previous Showing 41-49 of 49 results.