cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-49 of 49 results.

A170291 Number of reduced words of length n in Coxeter group on 42 generators S_i with relations (S_i)^2 = (S_i S_j)^41 = I.

Original entry on oeis.org

1, 42, 1722, 70602, 2894682, 118681962, 4865960442, 199504378122, 8179679503002, 335366859623082, 13750041244546362, 563751691026400842, 23113819332082434522, 947666592615379815402, 38854330297230572431482
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170761, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 +
2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 +
2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 +
2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 +
2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(820*t^41 - 40*t^40 - 40*t^39 - 40*t^38 - 40*t^37 - 40*t^36 - 40*t^35
- 40*t^34 - 40*t^33 - 40*t^32 - 40*t^31 - 40*t^30 - 40*t^29 - 40*t^28 -
40*t^27 - 40*t^26 - 40*t^25 - 40*t^24 - 40*t^23 - 40*t^22 - 40*t^21 -
40*t^20 - 40*t^19 - 40*t^18 - 40*t^17 - 40*t^16 - 40*t^15 - 40*t^14 -
40*t^13 - 40*t^12 - 40*t^11 - 40*t^10 - 40*t^9 - 40*t^8 - 40*t^7 -
40*t^6 - 40*t^5 - 40*t^4 - 40*t^3 - 40*t^2 - 40*t + 1)

A170339 Number of reduced words of length n in Coxeter group on 42 generators S_i with relations (S_i)^2 = (S_i S_j)^42 = I.

Original entry on oeis.org

1, 42, 1722, 70602, 2894682, 118681962, 4865960442, 199504378122, 8179679503002, 335366859623082, 13750041244546362, 563751691026400842, 23113819332082434522, 947666592615379815402, 38854330297230572431482
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170761, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 +
2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 +
2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 +
2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 +
2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 +
2*t + 1)/(820*t^42 - 40*t^41 - 40*t^40 - 40*t^39 - 40*t^38 - 40*t^37 -
40*t^36 - 40*t^35 - 40*t^34 - 40*t^33 - 40*t^32 - 40*t^31 - 40*t^30 -
40*t^29 - 40*t^28 - 40*t^27 - 40*t^26 - 40*t^25 - 40*t^24 - 40*t^23 -
40*t^22 - 40*t^21 - 40*t^20 - 40*t^19 - 40*t^18 - 40*t^17 - 40*t^16 -
40*t^15 - 40*t^14 - 40*t^13 - 40*t^12 - 40*t^11 - 40*t^10 - 40*t^9 -
40*t^8 - 40*t^7 - 40*t^6 - 40*t^5 - 40*t^4 - 40*t^3 - 40*t^2 - 40*t + 1)

A170387 Number of reduced words of length n in Coxeter group on 42 generators S_i with relations (S_i)^2 = (S_i S_j)^43 = I.

Original entry on oeis.org

1, 42, 1722, 70602, 2894682, 118681962, 4865960442, 199504378122, 8179679503002, 335366859623082, 13750041244546362, 563751691026400842, 23113819332082434522, 947666592615379815402, 38854330297230572431482
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170761, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

Formula

G.f. (t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 +
2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 +
2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 +
2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 +
2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3
+ 2*t^2 + 2*t + 1)/(820*t^43 - 40*t^42 - 40*t^41 - 40*t^40 - 40*t^39 -
40*t^38 - 40*t^37 - 40*t^36 - 40*t^35 - 40*t^34 - 40*t^33 - 40*t^32 -
40*t^31 - 40*t^30 - 40*t^29 - 40*t^28 - 40*t^27 - 40*t^26 - 40*t^25 -
40*t^24 - 40*t^23 - 40*t^22 - 40*t^21 - 40*t^20 - 40*t^19 - 40*t^18 -
40*t^17 - 40*t^16 - 40*t^15 - 40*t^14 - 40*t^13 - 40*t^12 - 40*t^11 -
40*t^10 - 40*t^9 - 40*t^8 - 40*t^7 - 40*t^6 - 40*t^5 - 40*t^4 - 40*t^3 -
40*t^2 - 40*t + 1)

A170435 Number of reduced words of length n in Coxeter group on 42 generators S_i with relations (S_i)^2 = (S_i S_j)^44 = I.

Original entry on oeis.org

1, 42, 1722, 70602, 2894682, 118681962, 4865960442, 199504378122, 8179679503002, 335366859623082, 13750041244546362, 563751691026400842, 23113819332082434522, 947666592615379815402, 38854330297230572431482
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170761, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 +
2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 +
2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 +
2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 +
2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4
+ 2*t^3 + 2*t^2 + 2*t + 1)/(820*t^44 - 40*t^43 - 40*t^42 - 40*t^41 -
40*t^40 - 40*t^39 - 40*t^38 - 40*t^37 - 40*t^36 - 40*t^35 - 40*t^34 -
40*t^33 - 40*t^32 - 40*t^31 - 40*t^30 - 40*t^29 - 40*t^28 - 40*t^27 -
40*t^26 - 40*t^25 - 40*t^24 - 40*t^23 - 40*t^22 - 40*t^21 - 40*t^20 -
40*t^19 - 40*t^18 - 40*t^17 - 40*t^16 - 40*t^15 - 40*t^14 - 40*t^13 -
40*t^12 - 40*t^11 - 40*t^10 - 40*t^9 - 40*t^8 - 40*t^7 - 40*t^6 - 40*t^5
- 40*t^4 - 40*t^3 - 40*t^2 - 40*t + 1)

A170483 Number of reduced words of length n in Coxeter group on 42 generators S_i with relations (S_i)^2 = (S_i S_j)^45 = I.

Original entry on oeis.org

1, 42, 1722, 70602, 2894682, 118681962, 4865960442, 199504378122, 8179679503002, 335366859623082, 13750041244546362, 563751691026400842, 23113819332082434522, 947666592615379815402, 38854330297230572431482
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170761, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    With[{num=Total[2t^Range[44]]+t^45+1,den=Total[-40 t^Range[44]]+820t^45+ 1},CoefficientList[Series[num/den,{t,0,20}],t]] (* Harvey P. Dale, May 20 2014 *)

Formula

G.f. (t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 +
2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 +
2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 +
2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 +
2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 +
2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(820*t^45 - 40*t^44 - 40*t^43 -
40*t^42 - 40*t^41 - 40*t^40 - 40*t^39 - 40*t^38 - 40*t^37 - 40*t^36 -
40*t^35 - 40*t^34 - 40*t^33 - 40*t^32 - 40*t^31 - 40*t^30 - 40*t^29 -
40*t^28 - 40*t^27 - 40*t^26 - 40*t^25 - 40*t^24 - 40*t^23 - 40*t^22 -
40*t^21 - 40*t^20 - 40*t^19 - 40*t^18 - 40*t^17 - 40*t^16 - 40*t^15 -
40*t^14 - 40*t^13 - 40*t^12 - 40*t^11 - 40*t^10 - 40*t^9 - 40*t^8 -
40*t^7 - 40*t^6 - 40*t^5 - 40*t^4 - 40*t^3 - 40*t^2 - 40*t + 1)

A170531 Number of reduced words of length n in Coxeter group on 42 generators S_i with relations (S_i)^2 = (S_i S_j)^46 = I.

Original entry on oeis.org

1, 42, 1722, 70602, 2894682, 118681962, 4865960442, 199504378122, 8179679503002, 335366859623082, 13750041244546362, 563751691026400842, 23113819332082434522, 947666592615379815402, 38854330297230572431482
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170761, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 + 2*t^39 +
2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 + 2*t^31 +
2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 + 2*t^23 +
2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 + 2*t^15 +
2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 +
2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(820*t^46 - 40*t^45 -
40*t^44 - 40*t^43 - 40*t^42 - 40*t^41 - 40*t^40 - 40*t^39 - 40*t^38 -
40*t^37 - 40*t^36 - 40*t^35 - 40*t^34 - 40*t^33 - 40*t^32 - 40*t^31 -
40*t^30 - 40*t^29 - 40*t^28 - 40*t^27 - 40*t^26 - 40*t^25 - 40*t^24 -
40*t^23 - 40*t^22 - 40*t^21 - 40*t^20 - 40*t^19 - 40*t^18 - 40*t^17 -
40*t^16 - 40*t^15 - 40*t^14 - 40*t^13 - 40*t^12 - 40*t^11 - 40*t^10 -
40*t^9 - 40*t^8 - 40*t^7 - 40*t^6 - 40*t^5 - 40*t^4 - 40*t^3 - 40*t^2 -
40*t + 1)

A170579 Number of reduced words of length n in Coxeter group on 42 generators S_i with relations (S_i)^2 = (S_i S_j)^47 = I.

Original entry on oeis.org

1, 42, 1722, 70602, 2894682, 118681962, 4865960442, 199504378122, 8179679503002, 335366859623082, 13750041244546362, 563751691026400842, 23113819332082434522, 947666592615379815402, 38854330297230572431482
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170761, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 + 2*t^40 +
2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 + 2*t^32 +
2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 + 2*t^24 +
2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 + 2*t^16 +
2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 +
2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(820*t^47 -
40*t^46 - 40*t^45 - 40*t^44 - 40*t^43 - 40*t^42 - 40*t^41 - 40*t^40 -
40*t^39 - 40*t^38 - 40*t^37 - 40*t^36 - 40*t^35 - 40*t^34 - 40*t^33 -
40*t^32 - 40*t^31 - 40*t^30 - 40*t^29 - 40*t^28 - 40*t^27 - 40*t^26 -
40*t^25 - 40*t^24 - 40*t^23 - 40*t^22 - 40*t^21 - 40*t^20 - 40*t^19 -
40*t^18 - 40*t^17 - 40*t^16 - 40*t^15 - 40*t^14 - 40*t^13 - 40*t^12 -
40*t^11 - 40*t^10 - 40*t^9 - 40*t^8 - 40*t^7 - 40*t^6 - 40*t^5 - 40*t^4
- 40*t^3 - 40*t^2 - 40*t + 1)

A170627 Number of reduced words of length n in Coxeter group on 42 generators S_i with relations (S_i)^2 = (S_i S_j)^48 = I.

Original entry on oeis.org

1, 42, 1722, 70602, 2894682, 118681962, 4865960442, 199504378122, 8179679503002, 335366859623082, 13750041244546362, 563751691026400842, 23113819332082434522, 947666592615379815402, 38854330297230572431482
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170761, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Programs

  • Mathematica
    With[{num=Total[2t^Range[47]]+t^48+1,den=Total[-40 t^Range[47]]+820t^48+ 1},CoefficientList[Series[num/den,{t,0,30}],t]] (* Harvey P. Dale, Jan 14 2014 *)

Formula

G.f. (t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 + 2*t^41 +
2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 + 2*t^33 +
2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 + 2*t^25 +
2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 + 2*t^17 +
2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 +
2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(820*t^48 - 40*t^47 - 40*t^46 - 40*t^45 - 40*t^44 - 40*t^43 - 40*t^42
- 40*t^41 - 40*t^40 - 40*t^39 - 40*t^38 - 40*t^37 - 40*t^36 - 40*t^35 -
40*t^34 - 40*t^33 - 40*t^32 - 40*t^31 - 40*t^30 - 40*t^29 - 40*t^28 -
40*t^27 - 40*t^26 - 40*t^25 - 40*t^24 - 40*t^23 - 40*t^22 - 40*t^21 -
40*t^20 - 40*t^19 - 40*t^18 - 40*t^17 - 40*t^16 - 40*t^15 - 40*t^14 -
40*t^13 - 40*t^12 - 40*t^11 - 40*t^10 - 40*t^9 - 40*t^8 - 40*t^7 -
40*t^6 - 40*t^5 - 40*t^4 - 40*t^3 - 40*t^2 - 40*t + 1)

A170675 Number of reduced words of length n in Coxeter group on 42 generators S_i with relations (S_i)^2 = (S_i S_j)^49 = I.

Original entry on oeis.org

1, 42, 1722, 70602, 2894682, 118681962, 4865960442, 199504378122, 8179679503002, 335366859623082, 13750041244546362, 563751691026400842, 23113819332082434522, 947666592615379815402, 38854330297230572431482
Offset: 0

Views

Author

John Cannon and N. J. A. Sloane, Dec 03 2009

Keywords

Comments

The initial terms coincide with those of A170761, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.

Formula

G.f. (t^49 + 2*t^48 + 2*t^47 + 2*t^46 + 2*t^45 + 2*t^44 + 2*t^43 + 2*t^42 +
2*t^41 + 2*t^40 + 2*t^39 + 2*t^38 + 2*t^37 + 2*t^36 + 2*t^35 + 2*t^34 +
2*t^33 + 2*t^32 + 2*t^31 + 2*t^30 + 2*t^29 + 2*t^28 + 2*t^27 + 2*t^26 +
2*t^25 + 2*t^24 + 2*t^23 + 2*t^22 + 2*t^21 + 2*t^20 + 2*t^19 + 2*t^18 +
2*t^17 + 2*t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 +
2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t +
1)/(820*t^49 - 40*t^48 - 40*t^47 - 40*t^46 - 40*t^45 - 40*t^44 - 40*t^43
- 40*t^42 - 40*t^41 - 40*t^40 - 40*t^39 - 40*t^38 - 40*t^37 - 40*t^36 -
40*t^35 - 40*t^34 - 40*t^33 - 40*t^32 - 40*t^31 - 40*t^30 - 40*t^29 -
40*t^28 - 40*t^27 - 40*t^26 - 40*t^25 - 40*t^24 - 40*t^23 - 40*t^22 -
40*t^21 - 40*t^20 - 40*t^19 - 40*t^18 - 40*t^17 - 40*t^16 - 40*t^15 -
40*t^14 - 40*t^13 - 40*t^12 - 40*t^11 - 40*t^10 - 40*t^9 - 40*t^8 -
40*t^7 - 40*t^6 - 40*t^5 - 40*t^4 - 40*t^3 - 40*t^2 - 40*t + 1)
Previous Showing 41-49 of 49 results.