cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A376881 Numbers that have exactly one Zumkeller divisor.

Original entry on oeis.org

6, 18, 20, 28, 70, 88, 100, 104, 196, 272, 304, 368, 464, 496, 550, 572, 650, 836, 945, 968, 1184, 1312, 1352, 1376, 1430, 1504, 1575, 1696, 1870, 1888, 1952, 2002, 2090, 2205, 2210, 2470, 2530, 2584, 2990, 3128, 3190, 3230, 3410, 3465, 3496, 3770, 3944
Offset: 1

Views

Author

Peter Luschny, Oct 19 2024

Keywords

Comments

d is a Zumkeller divisor of n if and only if d is a divisor of n and is Zumkeller (A083207).

Crossrefs

Subsequence of A376880.

Programs

  • Maple
    # The function 'isZumkeller' is defined in A376880.
    zdiv := n -> select(isZumkeller, NumberTheory:-Divisors(n)):
    select(n -> nops(zdiv(n)) = 1, [seq(1..4000)]);

Formula

If d is the only Zumkeller divisor of n and n is Zumkeller then d = n.

A376882 a(n) is the product of the Zumkeller divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 72, 1, 1, 1, 1, 1, 6, 1, 20, 1, 1, 1, 1728, 1, 1, 1, 28, 1, 180, 1, 1, 1, 1, 1, 72, 1, 1, 1, 800, 1, 252, 1, 1, 1, 1, 1, 82944, 1, 1, 1, 1, 1, 324, 1, 1568, 1, 1, 1, 2592000, 1, 1, 1, 1, 1, 396, 1, 1, 1, 70, 1, 1728, 1, 1, 1, 1, 1, 468, 1, 64000
Offset: 1

Views

Author

Peter Luschny, Oct 19 2024

Keywords

Comments

d is a Zumkeller divisor of n if and only if d is a divisor of n and is Zumkeller (A083207).

Examples

			The Zumkeller divisors of 80 are {20, 40, 80}, so a(80) = 64000.
The divisors of 81 are {1, 3, 9, 27, 81}, none of which is Zumkeller, so a(81) = 1.
		

Crossrefs

Cf. A083207, A023196, A171641, A376880 (positions of terms > 1).

Programs

  • Maple
    # The function 'isZumkeller' is defined in A376880.
    with(NumberTheory):
    zdiv := n -> select(isZumkeller, Divisors(n));
    a := n -> mul(k, k in zdiv(n));
    seq(a(n), n = 1..80);
  • PARI
    A376882(n) = { my(m=1); fordiv(n,d,if(A083206(d)>0, m *= d)); (m); }; \\ Antti Karttunen, Dec 02 2024

A171642 Non-deficient numbers with odd sigma such that the sum of the even divisors is twice the sum of the odd divisors.

Original entry on oeis.org

18, 162, 450, 882, 1458, 2178, 2450, 3042, 4050, 5202, 6050, 6498, 7938, 8450, 9522, 11250, 13122, 15138, 17298, 19602, 22050, 24642, 27378, 30258, 33282, 36450, 39762, 43218, 46818, 50562, 54450, 58482, 61250, 62658, 66978, 71442, 76050, 80802, 85698
Offset: 1

Views

Author

Peter Luschny, Dec 14 2009

Keywords

Comments

Numbers which are non-deficient (2n <= sigma(n)) [A023196] such that sigma(n) [A000203] is odd and the sum of the even divisors [A074400] is twice the sum of the odd divisors [A000593].
The sequence of terms which are not of the form 72*k^2 + 72*k + 18 starts: 2450, 6050, 8450, 61250, 120050, 151250, 211250, 296450.

Examples

			Divisors(18) = {1, 2, 3, 6, 9, 18}, sigma(18) = 39, and 2 + 6 + 18 = 2*(1 + 3 + 9).
		

Crossrefs

Programs

  • Maple
    with(numtheory): A171642 := proc(n) local k,s,a;
    s := sigma(n); a := add(k,k=select(x->type(x,odd),divisors(n)));
    if 3*a = s and 2*n <= s and type(s,odd) then n else NULL fi end:
  • Python
    from sympy import divisors
    A171642 = []
    for n in range(1, 10**5):
        d = divisors(n)
        s = sum(d)
        if s % 2 and 2*n <= s and s == 3*sum([x for x in d if x % 2]):
            A171642.append(n)
    # Chai Wah Wu, Aug 20 2014

A306476 Numbers k, with sigma(k) >= 3k and sigma(k) divisible by 3, that are not in A204830.

Original entry on oeis.org

10556208, 10578672, 10589904, 10612368, 10657296, 10690992, 10702224, 10747152, 10825776, 10859472, 10870704, 10881936, 10938096, 10949328, 10971792, 10983024, 11005488, 11039184, 11050416, 11095344, 11117808, 11196432, 11207664, 11252592, 11286288, 11319984
Offset: 1

Views

Author

Giovanni Resta, Feb 18 2019

Keywords

Comments

From an idea of Amiram Eldar. Analogous sequence to A171641. The divisors of the listed terms k cannot be arranged in three disjoint sets each of them adding to sigma(k)/3.

Crossrefs

A337740 Weird numbers (A006037) with an even sum of divisors that are not Zumkeller numbers (A083207).

Original entry on oeis.org

73616, 682592, 2081824, 3963968, 4960448, 5440192, 6621632, 8000704, 8134208, 12979264, 31297472, 33736064, 43955584, 55691392, 58433152, 58904704, 160074368, 254533504, 263654656, 266828032, 267369728, 272240768, 352668416, 353383168, 357542656, 431462656, 530110208
Offset: 1

Views

Author

Amiram Eldar, Sep 17 2020

Keywords

Comments

Non-deficient numbers (A023196) with an even sum of divisors (A000203) that are neither pseudoperfect numbers (A005835) nor Zumkeller numbers (A083207).
Equivalently, numbers k such that sigma(k) >= 2*k and sigma(k) == 0 (mod 2), such that no subset of the aliquot divisors of k sums to k or to sigma(k)/2.

Examples

			73616 is a term since sigma(73616) = 147312 is even and larger than 2 * 73616 = 147232. No subset of the aliquot divisors of 73616 sums to 73616 or to sigma(73616)/2 = 73656.
		

Crossrefs

Intersection of A006037 and A171641.

Programs

  • Mathematica
    seqQ[n_] := Module[{d = Divisors[n], sum, c, x}, sum = Plus @@ d; If[sum < 2*n || OddQ[sum], False, c = CoefficientList[Product[1 + x^i, {i, d}], x]; c[[1 + 2*n]] == 0 && c[[1 + sum/2]] == 0]]; Select[Range[10^6], seqQ]

A339983 Coreful abundant numbers (A308053) with an even sum of coreful divisors (A057723) that are not coreful Zumkeller numbers (A339979).

Original entry on oeis.org

108, 216, 432, 540, 756, 864, 972, 1000, 1080, 1188, 1404, 1512, 1728, 1836, 1944, 2000, 2052, 2160, 2376, 2484, 2744, 2808, 3000, 3024, 3132, 3348, 3456, 3672, 3780, 3888, 3996, 4000, 4104, 4320, 4428, 4644, 4752, 4860, 4968, 5076, 5488, 5616, 5724, 5940, 6000
Offset: 1

Views

Author

Amiram Eldar, Dec 25 2020

Keywords

Examples

			108 is a term since its set of coreful divisors, {6, 12, 18, 36, 54, 108}, has an even sum, 234 > 2*108, and it cannot be partitioned into two disjoint sets of equal sum.
		

Crossrefs

Subsequence of A308053.
Similar sequences: A171641, A323341, A323342, A323343, A323344.

Programs

  • Mathematica
    q[n_] := Module[{r = Times @@ FactorInteger[n][[;; , 1]], d, sum, x}, d = r*Divisors[n/r]; (sum = Plus @@ d) >= 2*n && EvenQ[sum] && CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sum/2]] == 0]; Select[Range[10^4], q]
Previous Showing 11-16 of 16 results.