cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-11 of 11 results.

A319095 Triangle read by rows: T(0,0) = 1; T(n,k) = T(n-1, k) + T(n-1, k-1) + T(n-1, k-2) + 3*T(n-1, k-3) + T(n-1, k-4) + T(n-1, k-5) + T(n-1, k-6) + T(n-1, k-7) for k = 0..7*n; T(n,k) = 0 for n or k < 0.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 3, 8, 9, 10, 15, 12, 11, 10, 9, 4, 3, 2, 1, 1, 3, 6, 16, 27, 39, 64, 78, 90, 108, 108, 102, 94, 84, 60, 46, 33, 21, 10, 6, 3, 1, 1, 4, 10, 28, 59, 104, 188, 288, 401, 556, 686, 796, 899, 944, 928, 880, 803, 668, 542, 420, 305, 200, 132, 80, 43, 20, 10, 4, 1
Offset: 0

Views

Author

Shara Lalo, Oct 01 2018

Keywords

Comments

Row n gives the coefficients in the expansion of (1 + x + x^2 + 3*x^3 + x^4 + x^5 + x^6 + x^7)^n, where n is a nonnegative integer. The row sum at row n is s(n) = 10^n. In the center-justified triangle, the sum of numbers along "first layer" skew diagonals pointing top-right are the coefficients in the expansion of 1/(1 - x - x^2 - x^3 - 3*x^4 - x^5 - x^6 - x^7 - x^8) and the sum of numbers along "first layer" skew diagonals pointing top-left are the coefficients in the expansion of 1/(1 - x - x^2 - x^3 - x^4 - 3*x^5 - x^6 - x^7 - x^8), see links.
Note: Coefficients in expansion of (1 + x + ... + x^7)^n is given in A171890 (Octonomial coefficient array).

Examples

			Triangle begins:
1;
1, 1, 1,  3,  1,  1,  1,  1;
1, 2, 3,  8,  9, 10, 15, 12, 11,  10,   9,   4,  3,  2,  1;
1, 3, 6, 16, 27, 39, 64, 78, 90, 108, 108, 102, 94, 84, 60, 46, 33, 21, 10, 6, 3, 1;
...
		

References

  • Shara Lalo and Zagros Lalo, Polynomial Expansion Theorems and Number Triangles, Zana Publishing, 2018, ISBN: 978-1-9995914-0-3.

Crossrefs

Cf. A171890.

Programs

  • Mathematica
    f[n_] := CoefficientList[(1 + x + x^2 + 3*x^3 + x^4 + x^5 + x^6 + x^7)^n, x] ; Join @@ Table[f[k], {k, 0, 5}] // Flatten (* Amiram Eldar, Dec 07 2018 *)
  • Maxima
    T(n, k) := ratcoef((1 + x + x^2 + 3*x^3 + x^4 + x^5 + x^6 + x^7)^n, x, k)$
    create_list(T(n,k), n, 0, 10, k, 0, 7*n); /* Franck Maminirina Ramaharo, Nov 27 2018 */
  • PARI
    row(n) = Vecrev((1 + x + x^2 + 3*x^3 + x^4 + x^5 + x^6 + x^7)^n);
    tabl(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Oct 15 2018
    

Formula

T(n,k) = Sum_{i=0..k} Sum_{j=2*i..k} Sum_{q=3*i..k} Sum_{r=4*i..k} Sum_{p=5*i..k} Sum_{d=6*i..k}(f) for k=0..7*n; f= (3^(q - 2*r + p)*n!)/((n + d - k)!*(k + p - 2*d)!*(d + r - 2*p)!*(q + p - 2*r)!*(j + r - 2*q)!*(i + q - 2*j)!*(j - 2*i)!*i!); f=0 for (n + d - k)<0 or (k + p - 2*d)<0 or (d + r - 2*p)<0 or (q + p - 2*r)<0 or (j + r - 2*q)<0 or (i + q - 2*j)<0 or (j - 2*i)<0. A novel formula proven by Shara Lalo and Zagros Lalo. Also see formula in Links section.
G.f.: 1/(1 - t*x - t*x^2 - t*x^3 - 3*t*x^4 - t*x^5 - t*x^6 - t*x^7 - t*x^8).
Previous Showing 11-11 of 11 results.