cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 94 results. Next

A318318 Denominators of rational valued sequence whose Dirichlet convolution with itself yields A173557.

Original entry on oeis.org

1, 2, 1, 8, 1, 2, 1, 16, 2, 1, 1, 8, 1, 2, 1, 128, 1, 4, 1, 4, 1, 2, 1, 16, 1, 1, 2, 8, 1, 1, 1, 256, 1, 1, 1, 16, 1, 2, 1, 8, 1, 2, 1, 8, 1, 2, 1, 128, 2, 1, 1, 4, 1, 4, 1, 16, 1, 1, 1, 4, 1, 2, 2, 1024, 1, 2, 1, 1, 1, 1, 1, 32, 1, 1, 1, 8, 1, 1, 1, 64, 8, 1, 1, 8, 1, 2, 1, 16, 1, 2, 1, 8, 1, 2, 1, 256, 1, 4, 2, 1, 1, 1, 1, 8, 1
Offset: 1

Views

Author

Antti Karttunen, Aug 24 2018

Keywords

Comments

Not multiplicative because A318317 contains zeros.
Differs from A317926 at n = 200, 400, 600, 800, 900, 1200, 1400, 1600, 1800, 2200, 2400, 2700, 2800, 3200, 3600, 3800, 4050, 4200, 4400, 4600, 4800, 4900, 5200, ..., which seem to be a subsequence of positions of zeros in A318317.
Here a(200) = 1, while A317926(200) = 2.

Crossrefs

Cf. A173557, A318317 (numerators).
Cf. also A317926.

Programs

  • Mathematica
    f[1] = 1; f[n_] := f[n] = 1/2 (Module[{fac = FactorInteger[n]}, If[n == 1, 1, Product[fac[[i, 1]] - 1, {i, Length[fac]}]]] - Sum[f[d]*f[n/d], {d, Divisors[n][[2 ;; -2]]}]); Table[Denominator[f[n]], {n, 1, 100}] (* Vaclav Kotesovec, May 10 2025 *)
  • PARI
    up_to = 16384;
    A173557(n) = my(f=factor(n)[, 1]); prod(k=1, #f, f[k]-1); \\ From A173557
    DirSqrt(v) = {my(n=#v, u=vector(nA173557)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&dA317937.
    v318317_18 = DirSqrt(vector(up_to, n, A173557(n)));
    A318318(n) = denominator(v318317_18[n]);

Formula

a(n) = denominator of f(n), where f(1) = 1, f(n) = (1/2) * (A173557(n) - Sum_{d|n, d>1, d 1.

A319993 a(n) = A319997(n) / A173557(n).

Original entry on oeis.org

1, -1, 1, 0, 1, -1, 1, 0, 3, -1, 1, 0, 1, -1, 1, 0, 1, -3, 1, 0, 1, -1, 1, 0, 5, -1, 9, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 1, 0, 3, -1, 1, 0, 7, -5, 1, 0, 1, -9, 1, 0, 1, -1, 1, 0, 1, -1, 3, 0, 1, -1, 1, 0, 1, -1, 1, 0, 1, -1, 5, 0, 1, -1, 1, 0, 27, -1, 1, 0, 1, -1, 1, 0, 1, -3, 1, 0, 1, -1, 1, 0, 1, -7, 3, 0, 1, -1, 1, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2018

Keywords

Crossrefs

Programs

  • PARI
    A319993(n) =  { my(f=factor(n)); prod(i=1,#f~,if(2==f[i,1],-(1==f[i,2]),(f[i,1]^(f[i,2]-1)))); };
    
  • PARI
    A173557(n) = factorback(apply(p -> p-1, factor(n)[, 1]));
    A319997(n) = sumdiv(n,d,(d%2)*moebius(n/d)*d);
    A319993(n) = (A319997(n)/A173557(n));

Formula

Multiplicative with a(2^1) = -1, a(2^e) = 0 for e > 1, and a(p^e) = p^(e-1) when p is an odd prime.
a(n) = A319997(n) / A173557(n).
a(2n) = A003557(2n) - 2*A003557(n), a(2n+1) = A003557(2n+1).

A319999 Filter sequence combining A173557(n) with A319993(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 4, 8, 9, 10, 11, 12, 13, 14, 4, 15, 16, 17, 18, 12, 19, 20, 11, 21, 22, 23, 24, 25, 26, 27, 4, 28, 29, 30, 11, 31, 32, 30, 18, 33, 22, 34, 35, 36, 37, 38, 11, 39, 40, 41, 42, 43, 44, 33, 24, 31, 45, 46, 47, 48, 49, 50, 4, 51, 52, 53, 54, 55, 56, 57, 11, 58, 59, 60, 61, 48, 56, 62, 18, 63, 64, 65, 42, 66, 67, 68, 35, 69, 70, 58, 71, 48, 72, 58, 11, 73, 74, 75, 18, 76, 77, 78, 42
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2018

Keywords

Comments

Restricted growth sequence transform of ordered pair [A173557(n), A319993(n)].
For all i, j: a(i) = a(j) => A319997(i) = A319997(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A173557(n) = factorback(apply(p -> p-1, factor(n)[, 1]));
    A319993(n) =  { my(f=factor(n)); prod(i=1,#f~,if(2==f[i,1],-(1==f[i,2]),(f[i,1]^(f[i,2]-1)))); };
    v319999 = rgs_transform(vector(up_to,n,[A173557(n),A319993(n)]));
    A319999(n) = v319999[n];

A331179 Number of values of k, 1 <= k <= n, with A173557(k) = A173557(n), where A173557(n) = Product_{p-1 | p is prime and divisor of n}.

Original entry on oeis.org

1, 2, 1, 3, 1, 2, 1, 4, 3, 2, 1, 4, 1, 2, 1, 5, 1, 5, 1, 3, 2, 2, 1, 6, 4, 3, 7, 3, 1, 2, 1, 6, 1, 2, 1, 8, 1, 2, 2, 5, 1, 4, 1, 3, 3, 2, 1, 9, 4, 6, 1, 5, 1, 10, 2, 5, 2, 2, 1, 4, 1, 2, 6, 7, 1, 2, 1, 3, 1, 3, 1, 11, 1, 3, 5, 3, 2, 4, 1, 7, 12, 3, 1, 7, 1, 2, 1, 4, 1, 6, 2, 3, 3, 2, 3, 13, 1, 6, 3, 8, 1, 2, 1, 8, 2
Offset: 1

Views

Author

Antti Karttunen, Jan 11 2020

Keywords

Comments

Ordinal transform of A173557.

Crossrefs

Cf. A173557.
Cf. also A081373, A331175, A331178.

Programs

  • Mathematica
    A173557[n_] := If[n == 1, 1, Times @@ (FactorInteger[n][[All, 1]] - 1)];
    Module[{b}, b[_] = 0;
    a[n_] := With[{t = A173557[n]}, b[t] = b[t] + 1]];
    Array[a, 105] (* Jean-François Alcover, Jan 12 2022 *)
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A173557(n) = factorback(apply(p -> p-1, factor(n)[, 1]));
    v331179 = ordinal_transform(vector(up_to, n, A173557(n)));
    A331179(n) = v331179[n];

A333870 The number of iterations of the absolute Möbius divisor function (A173557) required to reach from n to 1.

Original entry on oeis.org

0, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 2, 1, 2, 2, 3, 2, 3, 3, 4, 2, 2, 3, 2, 3, 4, 2, 3, 1, 3, 2, 3, 2, 3, 3, 3, 2, 3, 3, 4, 3, 2, 4, 5, 2, 3, 2, 2, 3, 4, 2, 3, 3, 3, 4, 5, 2, 3, 3, 3, 1, 3, 3, 4, 2, 4, 3, 4, 2, 3, 3, 2, 3, 3, 3, 4, 2, 2, 3, 4, 3, 2, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Apr 08 2020

Keywords

Comments

Apparently, the least number that reaches 1 after k iterations is A082449(k-1) (checked numerically for 1 <= k <= 17).

Examples

			a(3) = 2 since there are 2 iterations from 3 to 1: A173557(3) = 2 and A173557(2) = 1.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p - 1; u[1] = 1; u[n_] := Times @@ (f @@@ FactorInteger[n]);a[n_] := Length @ FixedPointList[u, n] - 2; Array[a, 100]

A333874 Numbers k such that A173557(k) = A173557(k+1).

Original entry on oeis.org

1, 168, 194, 350, 1368, 1628, 3705, 5186, 5328, 6929, 7475, 25545, 26047, 26864, 28251, 34936, 37248, 56724, 65675, 81732, 82368, 87308, 87367, 88450, 91539, 132308, 164691, 166624, 244215, 265524, 280818, 281897, 388245, 465651, 501024, 577524, 806895, 859901
Offset: 1

Views

Author

Amiram Eldar, Apr 08 2020

Keywords

Comments

Kim et al. (2019) conjectured that A173557(k) = A173557(k+1) is divisible by 12 for all the terms k > 1.

Examples

			1 is a term since A173557(1) = A173557(2) = 1.
		

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := p - 1; u[1] = 1; u[n_] := Times @@ (f @@@ FactorInteger[n]); s = {}; u1 = 1; Do[u2 = u[n]; If[u1 == u2, AppendTo[s, n-1]]; u1 = u2, {n, 2, 10^5}]; s

A344995 Numbers k such that A051709(k)/A173557(k) is a positive natural number and a divisor of k.

Original entry on oeis.org

4, 6, 12, 28, 42, 312, 456, 496, 588, 828, 1080, 1216, 1242, 1377, 1560, 4560, 5964, 7320, 7480, 7584, 8128, 11400, 13728, 14784, 23760, 33462, 59400, 59520, 124020, 147840, 188600, 277648, 321000, 543552, 1288224, 1510272, 1596048, 1964544, 2038140, 3323736, 3611520, 3780672, 3909816, 6137440, 9034032, 10783890
Offset: 1

Views

Author

Antti Karttunen, Jun 05 2021

Keywords

Crossrefs

Subsequence of A344994.
Cf. also A344755, A345002.

Programs

  • PARI
    A051709(n) = ((sigma(n) + eulerphi(n)) - (2*n));
    A173557(n) = factorback(apply(p -> p-1, factor(n)[, 1]));
    isA344995(n) = { my(u=A051709(n),t=A173557(n),r=u/t); ((u>0)&&(1==denominator(r)&&!(n%r))); };

A345052 a(n) = A003557(n) * A048250(n) * A173557(n).

Original entry on oeis.org

1, 3, 8, 6, 24, 24, 48, 12, 24, 72, 120, 48, 168, 144, 192, 24, 288, 72, 360, 144, 384, 360, 528, 96, 120, 504, 72, 288, 840, 576, 960, 48, 960, 864, 1152, 144, 1368, 1080, 1344, 288, 1680, 1152, 1848, 720, 576, 1584, 2208, 192, 336, 360, 2304, 1008, 2808, 216, 2880, 576, 2880, 2520, 3480, 1152, 3720, 2880, 1152, 96
Offset: 1

Views

Author

Antti Karttunen, Jun 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^2 - 1)*p^(e - 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 16 2022 *)
  • PARI
    A345052(n) = { my(f=factor(n)); prod(i=1, #f~, ((f[i,1]^2)-1)*(f[i,1]^(f[i, 2]-1))); };

Formula

Multiplicative with a(p^e) = (p^2 - 1) * p^(e-1).
a(n) = A007434(n) / A003557(n) = A003557(n) * A048250(n) * A173557(n).
From Amiram Eldar, Oct 16 2022: (Start)
Sum_{k=1..n} a(k) ~ c * n^3, where c = 2/Pi^2 = 0.202642... (A185197).
Sum_{n>=1} 1/a(n) = A065484.
a(n) = A000010(n) * A048250(n). (End)

A345054 Odd numbers k such that A173557(k) divides nonzero A051709(k).

Original entry on oeis.org

27, 243, 1377, 2187, 3125, 19683, 28125, 55233, 68445, 177147, 195625, 203125, 239805, 253125, 453125, 823543, 907137, 1323297, 1378125, 1464561, 1594323, 1953125, 2278125, 3341637, 3572829, 5255361, 5877117, 9034497, 9819837, 11701053, 14348907, 17453125, 19460393, 20503125, 22209633, 26010621, 30074733, 44910045
Offset: 1

Views

Author

Antti Karttunen, Jun 06 2021

Keywords

Comments

Question: Are there any common terms with A345051?

Crossrefs

Odd terms in A344994.

Programs

  • PARI
    A051709(n) = ((sigma(n) + eulerphi(n)) - (2*n));
    A173557(n) = factorback(apply(p -> p-1, factor(n)[, 1]));
    isA345054(n) = if(!(n%2),0,my(u=A051709(n)); ((u>0)&&(0==(u%A173557(n)))));

A387159 Odd numbers k such that A173557(k) = A173557(sigma(k)), where A173557(n) is multiplicative with a(p^e) = p-1 and sigma is the sum of divisors function.

Original entry on oeis.org

1, 63, 135, 351, 875, 891, 999, 1647, 1859, 1971, 4239, 5211, 7479, 8451, 10719, 11367, 12339, 14607, 16317, 16551, 17847, 18171, 19791, 20439, 22103, 23679, 26919, 27951, 29511, 31131, 31407, 31487, 32427, 32751, 33399, 35667, 37287, 39231, 43767, 44739, 47331, 50571, 52191, 53811, 54459, 57319, 57699, 63207, 66771
Offset: 1

Views

Author

Antti Karttunen, Aug 19 2025

Keywords

Comments

Odd numbers k for which A173557(k) == A387157(k).

Crossrefs

Odd terms of A387158.
Cf. also A351443, A353679, A386425.

Programs

  • Mathematica
    A387159Q[k_] := OddQ[k] && #[k] == #[DivisorSigma[1, k]] & [Times @@ (FactorInteger[#][[All, 1]] - 1) &];
    Select[Range[100000], A387159Q] (* Paolo Xausa, Aug 20 2025 *)
  • PARI
    A173557(n) = factorback(apply(p -> p-1,factor(n)[,1]));
    is_A387159(n) = (n%2 && (A173557(sigma(n))==A173557(n)));
Previous Showing 21-30 of 94 results. Next