cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A187817 Number of permutations p of {1,...,n} such that exactly two elements of {p(1),...,p(i-1)} are between p(i) and p(i+1) for all i from 3 to n-1.

Original entry on oeis.org

1, 1, 2, 6, 4, 4, 4, 4, 8, 12, 20, 32, 52, 104, 188, 344, 616, 1116, 2232, 4236, 8084, 15212, 28760, 57520, 111512, 216804, 417560, 806440, 1612880, 3162132, 6209192, 12113136, 23670168, 47340336, 93411704, 184494460, 362693224, 713767712, 1427535424
Offset: 0

Views

Author

Alois P. Heinz, Oct 03 2013

Keywords

Examples

			a(4) = 4: 2314, 2341, 3214, 3241.
a(5) = 4: 23514, 32514, 34152, 43152.
a(6) = 4: 341625, 346152, 431625, 436152.
a(7) = 4: 3471625, 4371625, 4517263, 5417263.
a(8) = 8: 34716258, 43716258, 45182736, 45817263, 54182736, 54817263, 56283741, 65283741.
a(9) = 12: 348172596, 438172596, 451827369, 459182736, 541827369, 549182736, 561928374, 569283741, 651928374, 659283741, 672938514, 762938514.
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o) option remember; `if`(u+o<3, (u+o)!,
          `if`(o>2, b(sort([o-3, u+2])[]), 0)+
          `if`(u>2, b(sort([u-3, o+2])[]), 0))
        end:
    a:= n-> `if`(n=0, 1, add(b(sort([j-1, n-j])[]), j=1..n)):
    seq(a(n), n=0..40);
  • Mathematica
    b[u_, o_] := b[u, o] = If[u + o < 3, (u + o)!,
         If[o > 2, b @@ Sort[{o - 3, u + 2}], 0] +
         If[u > 2, b @@ Sort[{u - 3, o + 2}], 0]];
    a[n_] := If[n == 0, 1, Sum[b @@ Sort[{j - 1, n - j}], {j, 1, n}]];
    a /@ Range[0, 40] (* Jean-François Alcover, Mar 15 2021, after Alois P. Heinz *)

A249631 Number of permutations p of {1,...,n} such that |p(i+1)-p(i)| < k, k=2,...,n; T(n,k), read by rows.

Original entry on oeis.org

2, 2, 6, 2, 12, 24, 2, 20, 72, 120, 2, 34, 180, 480, 720, 2, 56, 428, 1632, 3600, 5040, 2, 88, 1042, 5124, 15600, 30240, 40320, 2, 136, 2512, 15860, 61872, 159840, 282240, 362880, 2, 208, 5912, 50186, 236388, 773040, 1764000, 2903040, 3628800
Offset: 2

Views

Author

Li-yao Xia, Nov 02 2014

Keywords

Examples

			Triangle starts with n=2:
2;
2,  6;
2, 12,  24;
2, 20,  72, 120;
2, 34, 180, 480, 720;
		

Crossrefs

Cf. A000142, main diagonal, A062119, subdiagonal.
Cf. A003274, A174700, A174701, A174702, 2nd to 5th columns, T(n,k), k=3,4,5,6.
Cf. A174703, A174704, A174705, A174706, A174707, A174708, similar definitions.

Programs

  • Haskell
    a n x = filter (\l -> all (< x) (zipWith (\x y -> abs (x - y)) l (tail l))) (permutations [1 .. n])
    
  • PARI
    isokp(perm, k) = {for (i=1, #perm-1, if (abs(perm[i]-perm[i+1]) >= k, return (0));); return (1);}
    tabl(nn) = {for (n=2, nn, for (k=2, n, print1(sum(i=1, n!, isokp(numtoperm(n, i), k)), ", ");); print(););} \\ Michel Marcus, Nov 06 2014
Previous Showing 11-12 of 12 results.