cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A347049 Number of odd-length ordered factorizations of n with integer alternating product.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 2, 3, 1, 1, 1, 7, 1, 1, 1, 11, 1, 1, 1, 5, 1, 1, 1, 3, 3, 1, 1, 14, 1, 3, 1, 3, 1, 5, 1, 5, 1, 1, 1, 7, 1, 1, 3, 15, 1, 1, 1, 3, 1, 1, 1, 24, 1, 1, 3, 3, 1, 1, 1, 14, 4, 1, 1, 7, 1, 1, 1, 5, 1, 7, 1, 3, 1, 1, 1, 24, 1, 3, 3, 11
Offset: 1

Views

Author

Gus Wiseman, Oct 10 2021

Keywords

Comments

An ordered factorization of n is a sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			The a(n) ordered factorizations for n = 2, 8, 12, 16, 24, 32, 36, 48:
  2   8       12      16      24      32          36      48
      2*2*2   2*2*3   2*2*4   2*2*6   2*2*8       2*2*9   2*4*6
              3*2*2   2*4*2   3*2*4   2*4*4       2*3*6   3*2*8
                      4*2*2   4*2*3   4*2*4       2*6*3   3*4*4
                              6*2*2   4*4*2       3*2*6   4*2*6
                                      8*2*2       3*3*4   4*4*3
                                      2*2*2*2*2   3*6*2   6*2*4
                                                  4*3*3   6*4*2
                                                  6*2*3   8*2*3
                                                  6*3*2   12*2*2
                                                  9*2*2   2*2*12
                                                          2*2*2*2*3
                                                          2*2*3*2*2
                                                          3*2*2*2*2
		

Crossrefs

Positions of 2's appear to be A030078.
Positions of 3's appear to be A054753.
Positions of 1's appear to be A167207.
Allowing non-integer alternating product gives A174726, unordered A339890.
The even-length version is A347048.
The unordered version is A347441, with same reverse version.
The case of partitions is A347444, ranked by A347453.
Allowing any length gives A347463.
A001055 counts factorizations (strict A045778, ordered A074206).
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A119620 counts partitions with alternating product 1, ranked by A028982.
A339846 counts even-length factorizations, ordered A174725.
A347050 = factorizations with alternating permutation, complement A347706.
A347437 = factorizations with integer alternating product, reverse A347442.
A347438 = factorizations with alternating product 1, on squares A273013.
A347439 = factorizations with integer reciprocal alternating product.
A347446 = partitions with integer alternating product, reverse A347445.
A347457 lists Heinz numbers of partitions with integer alternating product.
A347460 counts possible alternating products of factorizations.
A347708 counts possible alternating products of odd-length factorizations.

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[ordfacs[n],OddQ[Length[#]]&&IntegerQ[altprod[#]]&]],{n,100}]
  • PARI
    A347049(n, m=n, ap=1, e=0) = if(1==n,(e%2) && 1==denominator(ap), sumdiv(n, d, if(d>1, A347049(n/d, d, ap * d^((-1)^e), 1-e)))); \\ Antti Karttunen, Jul 28 2024

Formula

a(n) = A347463(n) - A347048(n).

Extensions

Data section extended up to a(100) by Antti Karttunen, Jul 28 2024

A346634 Number of strict odd-length integer partitions of 2n + 1.

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 9, 14, 19, 27, 38, 52, 71, 96, 128, 170, 224, 293, 380, 491, 630, 805, 1024, 1295, 1632, 2048, 2560, 3189, 3958, 4896, 6038, 7424, 9100, 11125, 13565, 16496, 20013, 24223, 29250, 35244, 42378, 50849, 60896, 72789, 86841, 103424, 122960, 145937
Offset: 0

Views

Author

Gus Wiseman, Aug 01 2021

Keywords

Examples

			The a(0) = 1 through a(7) = 14 partitions:
  (1)  (3)  (5)  (7)      (9)      (11)     (13)      (15)
                 (4,2,1)  (4,3,2)  (5,4,2)  (6,4,3)   (6,5,4)
                          (5,3,1)  (6,3,2)  (6,5,2)   (7,5,3)
                          (6,2,1)  (6,4,1)  (7,4,2)   (7,6,2)
                                   (7,3,1)  (7,5,1)   (8,4,3)
                                   (8,2,1)  (8,3,2)   (8,5,2)
                                            (8,4,1)   (8,6,1)
                                            (9,3,1)   (9,4,2)
                                            (10,2,1)  (9,5,1)
                                                      (10,3,2)
                                                      (10,4,1)
                                                      (11,3,1)
                                                      (12,2,1)
                                                      (5,4,3,2,1)
		

Crossrefs

Odd bisection of A067659, which is ranked by A030059.
The even version is the even bisection of A067661.
The case of all odd parts is counted by A069911 (non-strict: A078408).
The non-strict version is A160786, ranked by A340931.
The non-strict even version is A236913, ranked by A340784.
The even-length version is A343942 (non-strict: A236914).
The even-sum version is A344650 (non-strict: A236559 or A344611).
A000009 counts partitions with all odd parts, ranked by A066208.
A000009 counts strict partitions, ranked by A005117.
A027193 counts odd-length partitions, ranked by A026424.
A027193 counts odd-maximum partitions, ranked by A244991.
A058695 counts partitions of odd numbers, ranked by A300063.
A340385 counts partitions with odd length and maximum, ranked by A340386.
Other cases of odd length:
- A024429 set partitions
- A089677 ordered set partitions
- A166444 compositions
- A174726 ordered factorizations
- A332304 strict compositions
- A339890 factorizations

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n>i*(i+1)/2, 0,
         `if`(n=0, t, add(b(n-i*j, i-1, abs(t-j)), j=0..min(n/i, 1))))
        end:
    a:= n-> b(2*n+1$2, 0):
    seq(a(n), n=0..80);  # Alois P. Heinz, Aug 05 2021
  • Mathematica
    Table[Length[Select[IntegerPartitions[2n+1],UnsameQ@@#&&OddQ[Length[#]]&]],{n,0,15}]

Extensions

More terms from Alois P. Heinz, Aug 05 2021
Previous Showing 21-22 of 22 results.