cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A275196 Odd numbers n such that sigma(n) does not divide sigma(n^3).

Original entry on oeis.org

9, 25, 27, 49, 63, 75, 81, 99, 117, 121, 125, 135, 147, 153, 169, 171, 175, 207, 225, 243, 245, 261, 275, 289, 297, 325, 333, 343, 361, 363, 369, 375, 387, 405, 425, 441, 475, 477, 507, 513, 525, 529, 531, 539, 549, 567, 575, 603, 605, 625, 637, 639, 675, 693, 711, 725, 729
Offset: 1

Views

Author

Altug Alkan, Jul 20 2016

Keywords

Comments

All terms are composite since sigma(p) = p + 1 and sigma(p^3) = p^3 + p^2 + p + 1 = (p + 1)(p^2 + 1) for p prime.
An odd number n with prime factorization Product_i p_i^(e_i) is in this sequence if and only if Product_i ((p_i^(3*e_i + 1) - 1)/(p_i^(e_i + 1) - 1)) is not an integer.
Nonsquare terms of this sequence are 27, 63, 75, 99, 117, 125, 135, 147, 153, 171, 175, 207, 243, 245, 261, 275, ...
Terms that are not perfect powers are 63, 75, 99, 117, 135, 147, 153, 171, 175, 207, 245, 261, 275, 297, 325, 333, 363, 369, 375, ...

Examples

			63 is a term because sigma(63^3) = 437200 is not divisible by sigma(63) = 104.
		

Crossrefs

Programs

  • Mathematica
    Select[2Range[400] - 1, Not[Divisible[DivisorSigma[1, #^3], DivisorSigma[1, #]]] &] (* Alonso del Arte, Jul 20 2016 *)
  • PARI
    isok(n) = sigma(n^3) % sigma(n) != 0 && n % 2 == 1

A281364 Numbers n such that sigma(n^3) is the sum of two positive cubes.

Original entry on oeis.org

21, 22, 55, 129, 511, 770, 1070, 1071, 1074, 1434, 1708, 1914, 2721, 2926, 3080, 4195, 4464, 4814, 4879, 5236, 5907, 6086, 6114, 7228, 7831, 8029, 8289, 9086, 10149, 10547, 11145, 12305, 12621, 13348, 14993, 15012, 16212, 17670, 19513, 20020, 20083
Offset: 1

Views

Author

Altug Alkan, May 01 2016

Keywords

Comments

265247 is the first term that is prime; sigma(265247^3) = 18661780598460480 = 48432^3 + 264708^3. In other words, the equation (1 + p)*(1 + p^2) = a^3 + b^3 where p is prime and a, b > 0, is soluble.

Examples

			21 is a term because sigma(21^3) = 16000 = 20^3 + 20^3.
		

Crossrefs

Programs

  • PARI
    isA003325(n) = for(k=1, sqrtnint(n\2, 3), ispower(n-k^3, 3) && return(1));
    lista(nn) = for(n=1, nn, if(isA003325(sigma(n^3)), print1(n, ", ")));

A347155 Sum of divisors of nontriangular numbers.

Original entry on oeis.org

3, 7, 6, 8, 15, 13, 12, 28, 14, 24, 31, 18, 39, 20, 42, 36, 24, 60, 31, 42, 40, 30, 72, 32, 63, 48, 54, 48, 38, 60, 56, 90, 42, 96, 44, 84, 72, 48, 124, 57, 93, 72, 98, 54, 120, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 68, 126, 96, 144, 72, 195, 74, 114, 124, 140
Offset: 1

Views

Author

Omar E. Pol, Aug 20 2021

Keywords

Comments

The characteristic shape of the symmetric representation of a(n) consists in that in the main diagonal of the diagram both Dyck paths have the same orientation, that is both Dyck paths have peaks or both Dyck paths have valleys.
So knowing this characteristic shape we can know if a number is a nontriangular number (or not) just by looking at the diagram, even ignoring the concept of nontriangular number.
Therefore we can see a geometric pattern of the distribution of the nontriangular numbers in the stepped pyramid described in A245092.
If both Dyck paths have peaks on the main diagonal then the related subsequence of nontriangular numbers A014132 is A317303.
If both Dyck paths have valleys on the main diagonal then the related subsequence of nontriangular numbers A014132 is A317304.

Examples

			a(6) = 13 because the sum of divisors of the 6th nontriangular (i.e., 9) is 1 + 3 + 9 = 13.
On the other we can see that in the main diagonal of the diagrams both Dyck paths have the same orientation, that is both Dyck paths have peaks or both Dyck paths have valleys as shown below.
Illustration of initial terms:
m(n) = A014132(n).
.
   n   m(n) a(n)   Diagram
.                    _   _ _   _ _ _   _ _ _ _   _ _ _ _ _   _ _ _ _ _ _
                   _| | | | | | | | | | | | | | | | | | | | | | | | | | |
   1    2    3    |_ _|_| | | | | | | | | | | | | | | | | | | | | | | | |
                   _ _|  _|_| | | | | | | | | | | | | | | | | | | | | | |
   2    4    7    |_ _ _|    _|_| | | | | | | | | | | | | | | | | | | | |
   3    5    6    |_ _ _|  _|  _ _|_| | | | | | | | | | | | | | | | | | |
                   _ _ _ _|  _| |  _ _|_| | | | | | | | | | | | | | | | |
   4    7    8    |_ _ _ _| |_ _|_|    _ _|_| | | | | | | | | | | | | | |
   5    8   15    |_ _ _ _ _|  _|     |  _ _ _|_| | | | | | | | | | | | |
   6    9   13    |_ _ _ _ _| |      _|_| |  _ _ _|_| | | | | | | | | | |
                   _ _ _ _ _ _|  _ _|    _| |    _ _ _|_| | | | | | | | |
   7   11   12    |_ _ _ _ _ _| |  _|  _|  _|   |  _ _ _ _|_| | | | | | |
   8   12   28    |_ _ _ _ _ _ _| |_ _|  _|  _ _| | |  _ _ _ _|_| | | | |
   9   13   14    |_ _ _ _ _ _ _| |  _ _|  _|    _| | |    _ _ _ _|_| | |
  10   14   24    |_ _ _ _ _ _ _ _| |     |     |  _|_|   |  _ _ _ _ _|_|
                   _ _ _ _ _ _ _ _| |  _ _|  _ _|_|       | | |
  11   16   31    |_ _ _ _ _ _ _ _ _| |  _ _|  _|      _ _|_| |
  12   17   18    |_ _ _ _ _ _ _ _ _| | |_ _ _|      _| |  _ _|
  13   18   39    |_ _ _ _ _ _ _ _ _ _| |  _ _|    _|  _|_|
  14   19   20    |_ _ _ _ _ _ _ _ _ _| | |       |_ _|
  15   20   42    |_ _ _ _ _ _ _ _ _ _ _| |  _ _ _|  _|
                   _ _ _ _ _ _ _ _ _ _ _| | |  _ _| |
  16   22   36    |_ _ _ _ _ _ _ _ _ _ _ _| | |_ _ _|
  17   23   24    |_ _ _ _ _ _ _ _ _ _ _ _| | |
  18   24   60    |_ _ _ _ _ _ _ _ _ _ _ _ _| |
  19   25   31    |_ _ _ _ _ _ _ _ _ _ _ _ _| |
  20   26   42    |_ _ _ _ _ _ _ _ _ _ _ _ _ _|
  21   27   40    |_ _ _ _ _ _ _ _ _ _ _ _ _ _|
.
Column m gives the nontriangular numbers.
Also the diagrams have on the main diagonal the following property: diagram [1] has peaks, diagrams [2, 3] have valleys, diagrams [4, 5, 6] have peaks, diagrams [7, 8, 9, 10] have valleys, and so on.
a(n) is also the area (and the number of cells) of the n-th diagram.
For n = 3 the sum of the regions (or parts) of the third diagram is 3 + 3 = 6, so a(3) = 6.
For more information see A237593.
		

Crossrefs

Some sequences that gives sum of divisors: A000225 (of powers of 2), A008864 (of prime numbers), A065764 (of squares), A073255 (of composites), A074285 (of triangular numbers, also of generalized hexagonal numbers), A139256 (of perfect numbers), A175926 (of cubes), A224613 (of multiples of 6), A346865 (of hexagonal numbers), A346866 (of second hexagonal numbers), A346867 (of numbers with middle divisors), A346868 (of numbers with no middle divisors).

Programs

Formula

a(n) = A000203(A014132(n)).

A020476 Numbers k such that the sum of divisors of k^3 is a cube.

Original entry on oeis.org

1, 30154214043975990969, 76630991932799573643, 3590918978816938469301573291605, 68804810614900760202830061602802, 527113576787083306927808065765554478755087
Offset: 1

Views

Author

Keywords

Comments

WARNING: the listed terms are not proved to be in order. According to Basso (2017), it is not even proved that a(2) = 30154214043975990969. - Max Alekseyev, Mar 25 2023

Crossrefs

Programs

  • PARI
    isok(n) = ispower(sigma(n^3), 3); \\ Michel Marcus, Jul 19 2017
Previous Showing 11-14 of 14 results.