cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A353318 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k excedances (parts above the diagonal), zeros omitted.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 4, 1, 6, 1, 9, 1, 1, 12, 2, 1, 16, 5, 1, 20, 9, 1, 25, 16, 1, 30, 25, 1, 36, 39, 1, 1, 42, 56, 2, 1, 49, 80, 5, 1, 56, 109, 10, 1, 64, 147, 19, 1, 72, 192, 32, 1, 81, 249, 54, 1, 90, 315, 84, 1, 100, 396, 129, 1, 1, 110, 489, 190, 2, 1, 121, 600, 275, 5
Offset: 1

Views

Author

Gus Wiseman, May 21 2022

Keywords

Examples

			Triangle begins:
   1
   1   1
   1   2
   1   4
   1   6
   1   9   1
   1  12   2
   1  16   5
   1  20   9
   1  25  16
   1  30  25
   1  36  39   1
   1  42  56   2
   1  49  80   5
   1  56 109  10
For example, row n = 7 counts the following partitions:
  (1111111)  (7)       (43)
             (52)      (331)
             (61)
             (322)
             (421)
             (511)
             (2221)
             (3211)
             (4111)
             (22111)
             (31111)
             (211111)
		

Crossrefs

Row sums are A000041.
Row lengths are A000194, reversed A003056.
Column k = 1 is A002620, reversed A238875.
Column k = 2 is A097701.
The version for permutations is A008292, opposite A123125.
The weak version is A115720/A115994, rank statistic A257990.
The version for compositions is A352524, weak A352525.
The version for reversed partitions is A353319.
A000700 counts self-conjugate partitions, ranked by A088902.
A001522 counts partitions with a fixed point, ranked by A352827 (unproved).
A064428 counts partitions w/o a fixed point, ranked by A352826 (unproved).
A238352 counts reversed partitions by fixed points, rank statistic A352822.

Programs

  • Mathematica
    partsabove[y_]:=Length[Select[Range[Length[y]],#
    				

A353319 Irregular triangle read by rows where T(n,k) is the number of reversed integer partitions of n with k excedances (parts above the diagonal), all zeros removed.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 3, 4, 2, 1, 5, 4, 2, 7, 6, 2, 10, 6, 6, 15, 7, 7, 1, 18, 14, 7, 3, 26, 15, 11, 4, 35, 17, 19, 6, 47, 24, 19, 11, 61, 33, 22, 18, 1, 80, 44, 28, 20, 4, 103, 54, 42, 25, 7, 138, 60, 57, 31, 11, 175, 85, 58, 52, 15, 224, 112, 66, 64, 24
Offset: 1

Views

Author

Gus Wiseman, May 21 2022

Keywords

Examples

			Triangle begins:
   1
   1  1
   2  1
   2  3
   4  2  1
   5  4  2
   7  6  2
  10  6  6
  15  7  7  1
  18 14  7  3
  26 15 11  4
  35 17 19  6
  47 24 19 11
  61 33 22 18  1
  80 44 28 20  4
For example, row n = 9 counts the following reversed partitions:
  (1134)       (9)     (27)   (234)
  (1224)       (18)    (36)
  (1233)       (117)   (45)
  (11115)      (126)   (135)
  (11124)      (1116)  (144)
  (11133)      (1125)  (225)
  (11223)      (2223)  (333)
  (12222)
  (111114)
  (111123)
  (111222)
  (1111113)
  (1111122)
  (11111112)
  (111111111)
		

Crossrefs

Row sums are A000041.
Row lengths are A003056.
The version for permutations is A008292, opposite A123125.
The weak unreversed version is A115720/A115994, rank statistic A257990.
For fixed points instead of excedances we have A238352, rank stat A352822.
Column k = 0 is A238875.
The version for compositions is A352524, weak A352525.
The version for unreversed partitions is A353318.
A000700 counts self-conjugate partitions, ranked by A088902.
A001522 counts partitions with a fixed point, ranked by A352827 (unproved).
A064428 counts partitions w/o a fixed point, ranked by A352826 (unproved).

Programs

  • Mathematica
    partsabove[y_]:=Length[Select[Range[Length[y]],#
    				

A176084 Row sums of A175105.

Original entry on oeis.org

1, 2, 4, 9, 22, 58, 160, 454, 1311, 3828, 11260, 33290, 98778, 293866, 875960, 2614891, 7814544, 23373354, 69955372, 209478678, 627521578, 1880400340, 5636065932, 16895989570, 50658893073
Offset: 1

Views

Author

Mats Granvik, Apr 08 2010

Keywords

Comments

a(n+1)/a(n) tends to 3.
a(n)/A007051(n) tends to Product_{k>=1} (1-1/((3^k + 1)/2)). To observe the asymptote one needs 1000 or more decimal digits of the constant c=Product_{k>=1} (1-1/((3^k + 1)/2)). - Mats Granvik, Jan 02 2015

Examples

			a(25)/A007051(24) = 50658893073/141214768241 = 0.35873650967258963431... which is close to 0.35792312728995990302591...
		

Crossrefs

Cf. A177510.

Programs

  • Mathematica
    Clear[t]; nn = 25; t[n_, 1] = 1; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, k - 1}] + Sum[t[n - i, k], {i, 1, k - 1}], 0]; Table[Sum[t[n, k], {k, 1, n}], {n, 1, nn}](* Mats Granvik, Jan 02 2015 *)

Formula

a(n) ~ Product_{k>=1} (1-1/((3^k + 1)/2))*A007051(n). - Mats Granvik, Jan 01 2015
Previous Showing 21-23 of 23 results.