cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A179252 Numbers that have 12 terms in their Zeckendorf representation.

Original entry on oeis.org

75024, 103681, 114627, 118808, 120405, 121015, 121248, 121337, 121371, 121384, 121389, 121391, 121392, 150049, 160995, 165176, 166773, 167383, 167616, 167705, 167739, 167752, 167757, 167759, 167760, 178706, 182887, 184484, 185094, 185327, 185416, 185450, 185463
Offset: 1

Views

Author

Emeric Deutsch, Jul 05 2010

Keywords

Examples

			75024 = 1 + 3 + 8 + 21 + 55 + 144 + 377 + 987 + 2584 + 6765 + 17711 + 46368;
103681 = 1 + 3 + 8 + 21 + 55 + 144 + 377 + 987 + 2584 + 6765 + 17711 + 75025.
		

Crossrefs

Programs

  • Maple
    with(combinat): B := proc (n) local A, ct, m, j: A := proc (n) local i: for i while fibonacci(i) <= n do n-fibonacci(i) end do end proc: ct := 0: m := n: for j while 0 < A(m) do ct := ct+1: m := A(m) end do: ct+1 end proc: Q := {}: for i from fibonacci(25)-1 to 180000 do if B(i) = 12 then Q := `union`(Q, {i}) else end if end do: Q;
  • Mathematica
    Reap[For[m = 0; k = 1, k <= 10^8, k++, If[BitAnd[k, 2 k] == 0, m++; If[DigitCount[k, 2, 1] == 12, Print[m]; Sow[m]]]]][[2, 1]] (* Jean-François Alcover, Aug 20 2023 *)

A182569 Primes that have two terms in their Zeckendorf representation.

Original entry on oeis.org

7, 11, 23, 29, 37, 47, 97, 149, 157, 199, 241, 379, 521, 613, 631, 1021, 1741, 2207, 3571, 9349, 10949, 11933, 17713, 46381, 46457, 46601, 50549, 75169, 196439, 203183, 214129, 560597, 832129, 2178343, 3010349, 3531343, 14930441, 15444581, 16276621, 24157961
Offset: 1

Views

Author

Alex Ratushnyak, May 05 2012

Keywords

Comments

Primes of the form Fibonacci(x)+Fibonacci(y), x-y>1.

Examples

			7 = 5+2. 11=8+3. 23=21+2. 29 =21+8.
		

Crossrefs

Programs

  • Mathematica
    nn = 40; f = Fibonacci[Range[nn]]; ps = {}; Do[ps = Union[ps, Select[f[[k]] + Delete[f, {{k-1}, {k}, {k+1}}], PrimeQ]], {k, 4, nn-1}]; ps (* T. D. Noe, May 08 2012 *)

Formula

Intersection of A000040 and A179242. - Michel Marcus, May 28 2013

Extensions

More terms from T. D. Noe, May 08 2012

A182570 Primes that have three terms in their Zeckendorf representation.

Original entry on oeis.org

17, 19, 31, 41, 43, 59, 61, 71, 73, 79, 103, 107, 113, 131, 151, 167, 173, 179, 181, 191, 239, 251, 257, 269, 293, 383, 401, 419, 433, 467, 479, 487, 523, 617, 619, 647, 673, 701, 733, 757, 809, 877, 991, 997, 1009, 1013, 1063, 1097, 1223, 1367, 1453, 1601
Offset: 1

Views

Author

Alex Ratushnyak, May 05 2012

Keywords

Crossrefs

A182571 Primes that have four terms in their Zeckendorf representation.

Original entry on oeis.org

53, 67, 83, 101, 109, 127, 137, 139, 163, 193, 223, 263, 271, 277, 281, 283, 311, 317, 331, 337, 359, 389, 397, 409, 421, 439, 443, 461, 503, 547, 557, 563, 577, 641, 653, 659, 683, 691, 709, 761, 769, 811, 853, 857, 859, 911, 919, 937, 953, 1019, 1031, 1039
Offset: 1

Views

Author

Alex Ratushnyak, May 05 2012

Keywords

Crossrefs

A182572 Primes that have five terms in their Zeckendorf representation.

Original entry on oeis.org

197, 211, 227, 229, 307, 313, 347, 349, 353, 367, 431, 449, 457, 463, 491, 509, 541, 569, 571, 587, 599, 643, 661, 677, 719, 727, 739, 743, 751, 773, 797, 823, 827, 863, 881, 883, 887, 907, 941, 947, 967, 971, 1033, 1061, 1069, 1093, 1103, 1117, 1151, 1163, 1171
Offset: 1

Views

Author

Alex Ratushnyak, May 05 2012

Keywords

Crossrefs

A182573 Primes that have six terms in their Zeckendorf representation.

Original entry on oeis.org

373, 499, 593, 601, 607, 787, 821, 829, 839, 929, 977, 1109, 1129, 1213, 1217, 1303, 1307, 1321, 1361, 1439, 1447, 1451, 1481, 1483, 1493, 1549, 1553, 1567, 1579, 1787, 1823, 1913, 1931, 1949, 1951, 2027, 2083, 2111, 2113, 2137, 2143, 2161, 2179, 2281
Offset: 1

Views

Author

Alex Ratushnyak, May 05 2012

Keywords

Crossrefs

A182574 Primes that have seven terms in their Zeckendorf representation.

Original entry on oeis.org

983, 1499, 1559, 1583, 1973, 2203, 2347, 2423, 2437, 2473, 2549, 2557, 2579, 2939, 2957, 3049, 3083, 3187, 3191, 3329, 3371, 3389, 3391, 3413, 3499, 3533, 3541, 3547, 3557, 3559, 3659, 3761, 3769, 3797, 3889, 3923, 3931, 3943, 4001, 4049, 4057, 4111, 4133
Offset: 1

Views

Author

Alex Ratushnyak, May 05 2012

Keywords

Crossrefs

Previous Showing 11-17 of 17 results.