A174443
Generating function x/(1+4*x-8*x^2).
Original entry on oeis.org
0, 1, -4, 24, -128, 704, -3840, 20992, -114688, 626688, -3424256, 18710528, -102236160, 558628864, -3052404736, 16678649856, -91133837312, 497964548096, -2720928890880, 14867431948288, -81237158920192, 443888091267072, -2425449636429824, 13252903275855872
Offset: 0
Cf.
A180222 (unsigned version of this sequence).
-
a = 4/(1 + Sqrt[3]); b = 4/(1 - Sqrt[3]);
f[n_] = (a^n - b^n)/(a - b);
Table[FullSimplify[f[n]], {n, 0, 30}]
Correction of the Mathematica code and better name by
Joerg Arndt.
A201947
Triangle T(n,k), read by rows, given by (1,1,-1,0,0,0,0,0,0,0,...) DELTA (1,-1,1,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 1, 1, 2, 2, 0, 3, 5, 1, -1, 5, 10, 4, -2, -1, 8, 20, 12, -4, -4, 0, 13, 38, 31, -4, -13, -2, 1, 21, 71, 73, 3, -33, -11, 3, 1, 34, 130, 162, 34, -74, -42, 6, 6, 0, 55, 235, 344, 128, -146, -130, 0, 24, 3, -1
Offset: 0
Triangle begins:
1
1, 1
2, 2, 0
3, 5, 1, -1
5, 10, 4, -2, -1
8, 20, 12, -4, -4, 0
13, 38, 31, -4, -13, -2, 1
21, 71, 73, 3, -33, -11, 3, 1
34, 130, 162, 34, -74, -42, 6, 6, 0
55, 235, 344, 128, -146, -130, 0, 24, 3, -1
A140184
a(n) = 2*a(n-1) + 16*a(n-2) + 16*a(n-3) for n>3 with a(1)=1, a(2)=14, a(3)=60.
Original entry on oeis.org
1, 14, 60, 360, 1904, 10528, 57280, 313472, 1711872, 9355776, 51117056, 279316480, 1526198272, 8339333120, 45566902272, 248982306816, 1360464379904, 7433716105216, 40618579197952, 221944046157824, 1212724817166336, 6626451640025088, 36207605093236736
Offset: 1
a(5) = 1904 = 2*a(4) + 16*a(3) + 16*a(2) = 2*360 + 16*60 + 16*14.
a(4) = 360 since term (1,1) of X^4 = 360.
-
LinearRecurrence[{2,16,16},{1,14,60},40] (* or *) CoefficientList[Series[(-1-12 x-16 x^2)/(-1+2 x+16 x^2+16 x^3),{x,0,40}],x] (* Harvey P. Dale, May 03 2011 *)
Previous
Showing 11-13 of 13 results.
Comments