cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-14 of 14 results.

A328458 Maximum run-length of the nontrivial divisors (greater than 1 and less than n) of n.

Original entry on oeis.org

1, 0, 0, 1, 0, 2, 0, 1, 1, 1, 0, 3, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 3, 1, 1, 1, 1, 0, 2, 0, 1, 1, 1, 1, 3, 0, 1, 1, 2, 0, 2, 0, 1, 1, 1, 0, 3, 1, 1, 1, 1, 0, 2, 1, 2, 1, 1, 0, 5, 0, 1, 1, 1, 1, 2, 0, 1, 1, 1, 0, 3, 0, 1, 1, 1, 1, 2, 0, 2, 1, 1, 0, 3, 1, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 3, 0, 1, 1, 2, 0, 2, 0, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Oct 17 2019

Keywords

Comments

By convention, a(1) = 1, and a(p) = 0 for p prime.

Examples

			The non-singleton runs of the nontrivial divisors of 1260 are: {2,3,4,5,6,7} {9,10} {14,15} {20,21} {35,36}, so a(1260) = 6.
		

Crossrefs

Positions of first appearances are A328459.
Positions of 0's and 1's are A088723.
The version that looks at all divisors is A055874.
The number of successive pairs of divisors > 1 of n is A088722(n).
The Heinz number of the multiset of run-lengths of divisors of n is A328166(n).

Programs

  • Mathematica
    Table[Switch[n,1,1,?PrimeQ,0,,Max@@Length/@Split[DeleteCases[Divisors[n],1|n],#2==#1+1&]],{n,100}]
  • PARI
    A328458(n) = if(1==n,n,my(rl=0,pd=0,m=0); fordiv(n, d, if(1(1+pd), m = max(m,rl); rl=0); pd=d; rl++)); max(m,rl)); \\ Antti Karttunen, Feb 23 2023

Extensions

Data section extended up to a(105) by Antti Karttunen, Feb 23 2023

A328510 Smallest number whose divisors have n non-singleton runs.

Original entry on oeis.org

1, 2, 20, 90, 630, 1260, 3780, 21420, 41580, 128520, 270270, 554400, 706860, 1413720, 2042040, 4324320, 4084080, 9189180, 6126120, 43825320, 12252240, 18378360, 82162080, 36756720, 85765680, 73513440, 183783600, 306306000, 257297040, 563603040, 514594080
Offset: 0

Views

Author

Gus Wiseman, Oct 18 2019

Keywords

Examples

			The sequence of terms together with their non-singleton runs of divisors begins:
    1: {}
    2: {{1,2}}
   20: {{1,2},{4,5}}
   90: {{1,2,3},{5,6},{9,10}}
  630: {{1,2,3},{5,6,7},{9,10},{14,15}}
		

Crossrefs

Equal {1} followed by the positions of first appearances in A328511 (times 2).
The longest run of divisors of n has length A055874.
Numbers whose divisors have no non-singleton runs are A005408.
The number of successive pairs of divisors of n is A129308(n).
The number of singleton runs of divisors is A132881.

Programs

  • Mathematica
    dv=Table[Length[DeleteCases[Length/@Split[Divisors[n],#2==#1+1&],1]],{n,1000}];
    Table[Position[dv,i][[1,1]],{i,Union[dv]}]

Extensions

Offset changed to 0 and a(10)-a(30) added by Giovanni Resta, Oct 25 2019

A328511 Number of non-singleton runs of divisors of 2n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Oct 18 2019

Keywords

Examples

			The divisors of 90 have runs: {{1, 2, 3}, {5, 6}, {9, 10}, {15}, {18}, {30}, {45}, {90}}, so a(45) = 3.
		

Crossrefs

Positions of first appearances are A328510.
The longest run of divisors of n has length A055874.
Numbers whose divisors have no non-singleton runs are A005408.
The number of successive pairs of divisors of n is A129308(n).
The number of singleton runs of divisors is A132881.

Programs

  • Maple
    f:= proc(n) local D,B,R;
      D:= sort(convert(numtheory:-divisors(2*n),list));
      B:= D[2..-1]-D[1..-2];
      R:= select(j -> (j=1 or B[j-1]>1) and B[j]=1, [$1..nops(B)]);
      nops(R);
    end proc:
    map(f, [$1..100]); # Robert Israel, Oct 25 2019
  • Mathematica
    Table[Length[DeleteCases[Length/@Split[Divisors[2*n],#2==#1+1&],1]],{n,100}]

A328459 Sorted positions of first appearances in A328458 (maximum run-length of nontrivial divisors) of each positive integer in the image.

Original entry on oeis.org

1, 2, 6, 12, 60, 420, 504, 840, 2520, 27720, 360360, 720720, 4084080
Offset: 0

Views

Author

Gus Wiseman, Oct 17 2019

Keywords

Examples

			The sequence of terms > 1 together with their nontrivial divisors begins:
    2: {}
    6: {2,3}
   12: {2,3,4,6}
   60: {2,3,4,5,6,10,12,15,20,30}
  420: {2,3,4,5,6,7,10,12,14,15,20,21,28,30,35,42,60,70,84,105,140,210}
  504: {2,3,4,6,7,8,9,12,14,18,21,24,28,36,42,56,63,72,84,126,168,252}
		

Crossrefs

Positions of first appearances in A328458.
The version for all divisors is A051451.

Programs

  • Mathematica
    dav=Table[Switch[n,1,1,_,Max@@Length/@Split[DeleteCases[Divisors[n],1|n],#2==#1+1&]],{n,1000}];
    Table[Position[dav,i][[1,1]],{i,Union[dav]}]//Sort

Extensions

a(12) from Robert Israel, Mar 31 2023
Previous Showing 11-14 of 14 results.