cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A184641 Number of partitions of n having no parts with multiplicity 6.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 15, 21, 29, 40, 54, 72, 96, 127, 166, 216, 279, 358, 457, 580, 735, 924, 1159, 1446, 1799, 2228, 2752, 3388, 4158, 5087, 6207, 7551, 9165, 11093, 13401, 16144, 19412, 23286, 27882, 33310, 39727, 47289, 56191, 66647, 78923, 93299
Offset: 0

Views

Author

Alois P. Heinz, Jan 18 2011

Keywords

Examples

			a(6) = 10, because 10 partitions of 6 have no parts with multiplicity 6: [1,1,1,1,2], [1,1,2,2], [2,2,2], [1,1,1,3], [1,2,3], [3,3], [1,1,4], [2,4], [1,5], [6].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, [0, 0],
          add((l->`if`(j=6, [l[1]$2], l))(b(n-i*j, i-1)), j=0..n/i)))
        end:
    a:= n-> (l-> l[1]-l[2])(b(n, n)):
    seq(a(n), n=0..50);
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, Sum[Function[l, If[j == 6, {l[[1]], l[[1]]}, l]][b[n - i*j, i - 1]], {j, 0, n/i}]]];
    a[n_] := b[n, n][[1]] - b[n, n][[2]];
    Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 30 2018, after Alois P. Heinz *)

Formula

a(n) = A000041(n) - A183563(n).
a(n) = A183568(n,0) - A183568(n,6).
G.f.: Product_{j>0} (1-x^(6*j)+x^(7*j))/(1-x^j).
a(n) ~ exp(sqrt((Pi^2/3 + 4*r)*n)) * sqrt(Pi^2/6 + 2*r) / (4*Pi*n), where r = Integral_{x=0..oo} log(1 + exp(-x) - exp(-6*x) + exp(-8*x)) dx = 0.79818518024793359047735154473665146019665210453617381247423... - Vaclav Kotesovec, Jun 12 2025

A187866 Greatest k such that prime(n)*(prime(n)-k)-1 and prime(n)*(prime(n)-k)+1 are twin primes, k >= 0 and k < prime(n) or -1 if no such k exists.

Original entry on oeis.org

0, 1, -1, 1, -1, -1, 11, 7, 17, 17, -1, -1, 11, 19, 41, -1, 41, -1, 43, 53, -1, -1, 29, 41, -1, 59, 97, 101, 61, 89, -1, 101, 131, 127, 137, 73, 133, 127, 137, 119, 47, 163, 101, 157, 131
Offset: 1

Views

Author

Pierre CAMI, Mar 14 2011

Keywords

Comments

Conjectures:
1. There are only 11 primes such that k does not exist: 5, 11, 13, 31, 37, 53, 61, 73, 79, 97, 127 (same as A183563).
2. There are only 20 primes such that k(n) = A187563(n): 2, 3, 7, 17, 19, 23, 41, 47, 59, 89, 103, 149, 167, 173, 179, 191, 277, 353, 433, 727.
3. If prime(n) >= 3 there are always at least 2 pairs of twin primes between prime(n) and prime(n)^2.

Crossrefs

Cf. A187563.

Programs

  • Mathematica
    a[n_] := (k=Prime[n]-1; While[p = Prime[n]*(Prime[n]-k)-1; k>=0 && !(PrimeQ[p] && PrimeQ[p + 2]), k--]; k); a /@ Range[45] (* Jean-François Alcover, Mar 28 2011 *)
Previous Showing 11-12 of 12 results.