cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A185284 Number of disconnected 8-regular simple graphs on n vertices with girth at least 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 14, 1
Offset: 0

Views

Author

Jason Kimberley, Feb 22 2011

Keywords

Crossrefs

Disconnected k-regular simple graphs with girth at least 4: A185214 (any k), A185204 (triangle); specified degree k: A185224 (k=2), A185234 (k=3), A185244 (k=4), A185254 (k=5), A185264 (k=6), A185274 (k=7), this sequence (k=8), A185294 (k=9).

A185294 Number of disconnected 9-regular simple graphs on 2n vertices with girth at least 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 15
Offset: 0

Views

Author

Jason Kimberley, Feb 22 2011

Keywords

Crossrefs

Disconnected k-regular simple graphs with girth at least 4: A185214 (any k), A185204 (triangle); specified degree k: A185224 (k=2), A185234 (k=3), A185244 (k=4), A185254 (k=5), A185264 (k=6), A185274 (k=7), A185284 (k=8), this sequence (k=9).

A185217 Number of disconnected regular simple graphs on n vertices with girth at least 7.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 4, 3, 5, 4, 6, 6, 8, 8, 11, 11, 14, 15, 19, 20, 25, 27, 33, 36, 43, 48, 57, 63, 74, 83, 97, 108, 126, 141, 163, 183, 210, 236, 272, 304, 350, 390, 471, 498, 1175, 635, 32957, 807, 1886322, 1022, 101215816, 1291, 5025322391
Offset: 0

Views

Author

Jason Kimberley, Oct 27 2012

Keywords

Crossrefs

Disconnected regular graphs with girth at least g: A068932 (g=3), A185214 (g=4), A185215 (g=5), A185216 (g=6), this sequence (g=7).
Disconnected k-regular simple graphs with girth at least 7: this sequence (all k), A185207 (triangle); A185227 (k=2), A185237 (k=3).

A210713 Number of disconnected regular simple graphs on n vertices with girth exactly 3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 1, 2, 2, 5, 4, 16, 13, 64, 98, 597, 2064, 22472, 112814, 4799607, 31138903, 4207941575, 115979716284, 13482672620149
Offset: 0

Views

Author

Jason Kimberley, Apr 02 2012

Keywords

Crossrefs

This sequence is the row sum sequence of the triangle A210703.
Disconnected k-regular simple graphs with girth exactly 3: this sequence (any k), A210703 (triangle); for fixed k: A185033 (k=3), A185043 (k=4), A185053 (k=5), A185063 (k=6).

Formula

a(n) = A068932(n) - A185214(n).

A185218 Number of disconnected regular simple graphs on n vertices with girth at least 8.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 8, 7, 10, 10, 13, 13, 17, 17, 22, 23, 28, 30, 37, 39, 47, 51, 61, 66, 78, 85, 100, 110, 127, 140, 163, 179, 206, 228, 261, 289, 330, 365, 416, 461, 522, 579, 657, 726, 819, 909, 1024, 1134, 1277, 1411
Offset: 0

Views

Author

Jason Kimberley, Dec 14 2012

Keywords

Crossrefs

Disconnected regular graphs with girth at least g: A068932 (g=3), A185214 (g=4), A185215 (g=5), A185216 (g=6), A185217 (g=7), this sequence (g=8).

A185219 Number of disconnected regular simple graphs on n vertices with girth at least 9.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7, 7, 9, 9, 12, 12, 15, 16, 19, 20, 25, 26, 31, 34, 40, 43, 51, 55, 64, 71, 81, 89, 103, 113, 129, 143, 162, 179, 204, 225, 254, 282, 317, 351, 396, 437, 490, 544, 608, 673, 753, 832, 928, 1028, 1144, 1264
Offset: 0

Views

Author

Jason Kimberley, Dec 19 2012

Keywords

Examples

			a(116) = 89574 because there is 1 such 0-regular graph (116 disconnected vertices), 1 such 1-regular graph (58 loose edges), A185229(116) = 89401, and 171 such 3-regular graphs (because A210709(58)=18).
		

Crossrefs

Disconnected regular graphs with girth at least g: A068932 (g=3), A185214 (g=4), A185215 (g=5), A185216 (g=6), A185217 (g=7), A185218 (g=8), this sequence (g=9).

A210714 Number of disconnected regular simple graphs on n vertices with girth exactly 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 3, 2, 5, 3, 15, 5, 44, 10, 203, 47, 1415, 1710, 27771, 197951, 2613710, 33117920, 463707092, 6709514282, 102306345333, 1597440872721
Offset: 0

Views

Author

Jason Kimberley, Dec 10 2012

Keywords

Programs

  • Mathematica
    A[s_Integer] := With[{s6 = StringPadLeft[ToString[s], 6, "0"]}, Cases[ Import["https://oeis.org/A" <> s6 <> "/b" <> s6 <> ".txt", "Table"], {, }][[All, 2]]];
    A185214 = A@185214;
    A185215 = A@185215;
    a[n_] := A185214[[n + 1]] - A185215[[n + 1]];
    a /@ Range[0, 31] (* Jean-François Alcover, Jan 27 2020 *)

Formula

a(n) = A185214(n) - A185215(n).

Extensions

a(31) corrected by the author, propagated from A185244, Jan 05 2013
Previous Showing 11-17 of 17 results.