cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A186395 Numbers k such that there are 3 primes between 100*k and 100*k + 99.

Original entry on oeis.org

588, 695, 797, 1430, 1621, 1751, 1809, 1869, 1904, 1913, 2042, 2067, 2123, 2127, 2322, 2471, 2505, 2562, 2734, 2833, 2862, 2874, 2935, 3023, 3077, 3134, 3371, 3380, 3552, 3611, 3679, 3703, 3707, 3725, 3878, 4046, 4167, 4215
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 20 2011

Keywords

Comments

There are 7528 possible prime patterns for centuries having 3 primes. - Tim Johannes Ohrtmann, Aug 27 2015

Examples

			588 is in this sequence because there are 3 primes between 58800 and 58899 (58831, 58889 and 58897).
		

Crossrefs

Cf. A038822 (number of primes between 100n and 100n+99), A186311 (first occurrences).
Cf. A181098 (no primes), A186393-A186408 (1 to 16 primes), A186509 (17 primes), A361723 (18 primes).

Programs

  • PARI
    for(n=1, 1e6, if(sum(k=100*n, 100*(n+1), ispseudoprime(k))==3, print1(n", "))); \\ Charles R Greathouse IV, Feb 21 2011
    
  • PARI
    N=100; s=0; forprime(p=2, 1e6, if(p>N, if(s==3, print1((N\100)-1, ", ")); s=1; N=100*(p\100+1), s++)) \\ Charles R Greathouse IV, Feb 21 2011

A186396 Numbers k such that there are 4 primes between 100*k and 100*k + 99.

Original entry on oeis.org

314, 356, 524, 662, 831, 881, 1037, 1101, 1124, 1307, 1370, 1433, 1623, 1713, 1733, 1755, 1801, 1808, 1831, 1880, 1956, 2031, 2150, 2178, 2202, 2222, 2231, 2330, 2374, 2502, 2503, 2532, 2545, 2611, 2618, 2656, 2659, 2665
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 20 2011

Keywords

Comments

There are 47878 possible prime patterns for centuries having 4 primes. - Tim Johannes Ohrtmann, Aug 27 2015

Examples

			314 is in this sequence because there are 4 primes between 31400 and 31499 (31469, 31477, 31481 and 31489).
		

Crossrefs

Cf. A038822 (number of primes between 100n and 100n+99), A186311 (first occurrences).
Cf. A181098 (no primes), A186393-A186408 (1 to 16 primes), A186509 (17 primes), A361723 (18 primes).

Programs

  • PARI
    for(n=1, 1e6, if(sum(k=100*n, 100*(n+1), ispseudoprime(k))==4, print1(n", "))); \\ Charles R Greathouse IV, Feb 21 2011
    
  • PARI
    N=100; s=0; forprime(p=2, 1e6, if(p>N, if(s==4, print1((N\100)-1, ", ")); s=1; N=100*(p\100+1), s++)) \\ Charles R Greathouse IV, Feb 21 2011

A186397 Numbers k such that there are 5 primes between 100*k and 100*k + 99.

Original entry on oeis.org

188, 273, 377, 403, 438, 506, 598, 605, 732, 758, 790, 800, 866, 885, 916, 936, 972, 981, 1031, 1032, 1060, 1074, 1075, 1086, 1103, 1128, 1136, 1193, 1194, 1204, 1218, 1240, 1248, 1265, 1280, 1287, 1293, 1298, 1390, 1400
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 20 2011

Keywords

Comments

There are 225044 possible prime patterns for centuries having 5 primes. - Tim Johannes Ohrtmann, Aug 27 2015

Examples

			188 is in this sequence because there are 5 primes between 18800 and 18899 (18803, 18839, 18859, 18869 and 18899).
		

Crossrefs

Cf. A038822 (number of primes between 100n and 100n+99), A186311 (first occurrences).
Cf. A181098 (no primes), A186393-A186408 (1 to 16 primes), A186509 (17 primes), A361723 (18 primes).

Programs

  • PARI
    for(n=1, 1e6, if(sum(k=100*n, 100*(n+1), ispseudoprime(k))==5, print1(n", "))); \\ Charles R Greathouse IV, Feb 21 2011
    
  • PARI
    N=100; s=0; forprime(p=2, 1e6, if(p>N, if(s==5, print1((N\100)-1, ", ")); s=1; N=100*(p\100+1), s++)) \\ Charles R Greathouse IV, Feb 21 2011

A186398 Numbers k such that there are 6 primes between 100*k and 100*k + 99.

Original entry on oeis.org

186, 234, 319, 332, 340, 380, 384, 443, 444, 450, 469, 489, 542, 548, 554, 574, 611, 632, 645, 681, 683, 696, 716, 725, 731, 746, 749, 754, 805, 814, 829, 859, 873, 897, 907, 956, 963, 966, 977, 1000, 1008, 1027, 1044, 1050
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 20 2011

Keywords

Comments

There are 830270 possible prime patterns for centuries having 6 primes. - Tim Johannes Ohrtmann, Aug 27 2015

Examples

			186 is in this sequence because there are 6 primes between 18600 and 18699 (18617, 18637, 18661, 18671, 18679 and 18691).
		

Crossrefs

Cf. A038822 (number of primes between 100n and 100n+99), A186311 (first occurrences).
Cf. A181098 (no primes), A186393-A186408 (1 to 16 primes), A186509 (17 primes), A361723 (18 primes).

Programs

  • Mathematica
    Select[Range[1100],PrimePi[100#+99]-PrimePi[100#]==6&] (* Harvey P. Dale, Jun 24 2018 *)
  • PARI
    for(n=1, 1e6, if(sum(k=100*n, 100*(n+1), ispseudoprime(k))==6, print1(n", "))); \\ Charles R Greathouse IV, Feb 21 2011
    
  • PARI
    N=100; s=0; forprime(p=2, 1e6, if(p>N, if(s==6, print1((N\100)-1, ", ")); s=1; N=100*(p\100+1), s++)) \\ Charles R Greathouse IV, Feb 21 2011

A186399 Numbers k such that there are 7 primes between 100*k and 100*k + 99.

Original entry on oeis.org

59, 95, 142, 165, 167, 191, 196, 206, 212, 242, 252, 281, 283, 297, 299, 318, 349, 357, 372, 385, 394, 406, 407, 414, 417, 425, 431, 433, 452, 457, 459, 462, 470, 480, 482, 504, 510, 533, 551, 555, 563, 585, 595, 599, 604
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 20 2011

Keywords

Comments

There are 2459376 possible prime patterns for centuries having 7 primes. - Tim Johannes Ohrtmann, Aug 27 2015

Examples

			59 is in this sequence because there are 7 primes between 5900 and 5999 (5903, 5923, 5927, 5939, 5953, 5981 and 5987).
		

Crossrefs

Cf. A038822 (number of primes between 100n and 100n+99), A186311 (first occurrences).
Cf. A181098 (no primes), A186393-A186408 (1 to 16 primes), A186509 (17 primes), A361723 (18 primes).

Programs

  • Mathematica
    Select[Range[610],PrimePi[100#+99]-PrimePi[100#]==7&] (* Harvey P. Dale, Nov 05 2011 *)
  • PARI
    for(n=1, 1e6, if(sum(k=100*n, 100*(n+1), ispseudoprime(k))==7, print1(n", "))); \\ Charles R Greathouse IV, Feb 21 2011
    
  • PARI
    N=100; s=0; forprime(p=2, 1e6, if(p>N, if(s==7, print1((N\100)-1, ", ")); s=1; N=100*(p\100+1), s++)) \\ Charles R Greathouse IV, Feb 21 2011

A186400 Numbers k such that there are 8 primes between 100*k and 100*k + 99.

Original entry on oeis.org

48, 64, 84, 105, 116, 135, 141, 149, 155, 162, 176, 178, 189, 204, 219, 224, 228, 231, 243, 245, 247, 248, 250, 255, 258, 260, 265, 271, 275, 289, 296, 307, 309, 328, 339, 361, 371, 374, 390, 396, 399, 402, 409, 413, 428, 432
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 20 2011

Keywords

Comments

There are 5900602 possible prime patterns for centuries having 8 primes. - Tim Johannes Ohrtmann, Aug 27 2015

Examples

			48 is in this sequence because there are 8 primes between 4800 and 4899 (4801, 4813, 4817, 4831, 4861, 4871, 4877 and 4889).
		

Crossrefs

Cf. A038822 (number of primes between 100n and 100n+99), A186311 (first occurrences).
Cf. A181098 (no primes), A186393-A186408 (1 to 16 primes), A186509 (17 primes), A361723 (18 primes).

Programs

  • PARI
    for(n=1, 1e6, if(sum(k=100*n, 100*(n+1), ispseudoprime(k))==8, print1(n", "))); \\ Charles R Greathouse IV, Feb 21 2011
    
  • PARI
    N=100; s=0; forprime(p=2, 1e6, if(p>N, if(s==8, print1((N\100)-1, ", ")); s=1; N=100*(p\100+1), s++)) \\ Charles R Greathouse IV, Feb 21 2011

A186401 Numbers k such that there are 9 primes between 100*k and 100*k + 99.

Original entry on oeis.org

41, 43, 70, 73, 83, 89, 99, 115, 117, 120, 123, 128, 132, 138, 143, 150, 158, 161, 163, 168, 171, 172, 193, 200, 202, 208, 209, 216, 222, 223, 225, 229, 233, 237, 239, 246, 276, 278, 282, 288, 290, 294, 300, 302, 303, 304
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 20 2011

Keywords

Comments

There are 11555200 possible prime patterns for centuries having 9 primes. - Tim Johannes Ohrtmann, Aug 27 2015

Examples

			41 is in this sequence because there are 9 primes between 4100 and 4199 (4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159 and 4177).
		

Crossrefs

Cf. A038822 (number of primes between 100n and 100n+99), A186311 (first occurrences).
Cf. A181098 (no primes), A186393-A186408 (1 to 16 primes), A186509 (17 primes), A361723 (18 primes).

Programs

  • Mathematica
    Select[Range[350],PrimePi[100#+99]-PrimePi[100#]==9&] (* Harvey P. Dale, Sep 05 2023 *)
  • PARI
    for(n=1, 1e6, if(sum(k=100*n, 100*(n+1), ispseudoprime(k))==9, print1(n", "))); \\ Charles R Greathouse IV, Feb 21 2011
    
  • PARI
    N=100; s=0; forprime(p=2, 1e6, if(p>N, if(s==9, print1((N\100)-1, ", ")); s=1; N=100*(p\100+1), s++)) \\ Charles R Greathouse IV, Feb 21 2011

A186402 Numbers k such that there are 10 primes between 100*k and 100*k + 99.

Original entry on oeis.org

21, 24, 31, 52, 53, 57, 66, 71, 77, 78, 79, 81, 102, 104, 108, 109, 110, 112, 113, 127, 133, 140, 146, 159, 175, 177, 180, 185, 197, 198, 205, 214, 232, 244, 254, 257, 263, 264, 266, 269, 270, 272, 274, 287, 292, 295, 298
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 20 2011

Keywords

Comments

There are 18634704 possible prime patterns for centuries having 10 primes. - Tim Johannes Ohrtmann, Aug 27 2015

Examples

			21 is in this sequence because there are 10 primes between 2100 and 2199 (2111, 2113, 2129, 2131, 2137, 2141, 2143, 2153, 2161 and 2179).
		

Crossrefs

Cf. A038822 (number of primes between 100n and 100n+99), A186311 (first occurrences).
Cf. A181098 (no primes), A186393-A186408 (1 to 16 primes), A186509 (17 primes), A361723 (18 primes).

Programs

  • Mathematica
    Select[Range[300], PrimePi[100 # + 99] - PrimePi[100 #]==10 &] (* Vincenzo Librandi, Feb 13 2015 *)
  • PARI
    for(n=1, 1e6, if(sum(k=100*n, 100*(n+1), ispseudoprime(k))==10, print1(n", "))); \\ Charles R Greathouse IV, Feb 21 2011
    
  • PARI
    N=100; s=0; forprime(p=2, 4e9, if(p>N, if(s==10, print1((N\100)-1, ", ")); s=1; N=100*(p\100+1), s++)) \\ Charles R Greathouse IV, Feb 21 2011

A186403 Numbers k such that there are 11 primes between 100*k and 100*k + 99.

Original entry on oeis.org

13, 25, 29, 32, 34, 38, 39, 44, 51, 61, 65, 72, 74, 80, 87, 90, 92, 93, 97, 100, 107, 111, 114, 121, 130, 134, 139, 154, 170, 181, 182, 183, 184, 187, 190, 192, 195, 210, 213, 217, 218, 227, 249, 251, 261, 262, 267, 279, 280
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 20 2011

Keywords

Comments

There are 24942742 possible prime patterns for centuries having 11 primes. - Tim Johannes Ohrtmann, Aug 27 2015

Examples

			13 is in this sequence because there are 11 primes between 1300 and 1399 (1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381 and 1399).
		

Crossrefs

Cf. A038822 (number of primes between 100n and 100n+99), A186311 (first occurrences).
Cf. A181098 (no primes), A186393-A186408 (1 to 16 primes), A186509 (17 primes), A361723 (18 primes).

Programs

  • Mathematica
    Select[Range[300],PrimePi[100#+99]-PrimePi[100#]==11&] (* Harvey P. Dale, Jul 26 2011 *)
  • PARI
    for(n=1, 1e6, if(sum(k=100*n, 100*(n+1), ispseudoprime(k))==11, print1(n", "))); \\ Charles R Greathouse IV, Feb 21 2011
    
  • PARI
    N=100; s=0; forprime(p=2, 4e9, if(p>N, if(s==11, print1((N\100)-1, ", ")); s=1; N=100*(p\100+1), s++)) \\ Charles R Greathouse IV, Feb 21 2011

A186404 Numbers k such that there are 12 primes between 100*k and 100*k + 99.

Original entry on oeis.org

11, 15, 17, 18, 28, 30, 37, 45, 46, 47, 50, 56, 60, 67, 68, 76, 85, 91, 98, 101, 103, 106, 118, 122, 125, 126, 129, 131, 136, 137, 144, 145, 148, 151, 152, 153, 157, 160, 164, 169, 173, 199, 203, 207, 221, 226, 235, 236, 241
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 20 2011

Keywords

Comments

There are 27836859 possible prime patterns for centuries having 12 primes. - Tim Johannes Ohrtmann, Aug 27 2015

Examples

			11 is in this sequence because there are 12 primes between 1100 and 1199 (1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187 and 1193).
		

Crossrefs

Cf. A038822 (number of primes between 100n and 100n+99), A186311 (first occurrences).
Cf. A181098 (no primes), A186393-A186408 (1 to 16 primes), A186509 (17 primes), A361723 (18 primes).

Programs

  • Mathematica
    Select[Range[250],PrimePi[100#+99]-PrimePi[100#]==12&] (* Harvey P. Dale, Sep 20 2011 *)
  • PARI
    for(n=1, 1e6, if(sum(k=100*n, 100*(n+1), ispseudoprime(k))==12, print1(n", "))); \\ Charles R Greathouse IV, Feb 21 2011
    
  • PARI
    N=100; s=0; forprime(p=2, 4e9, if(p>N, if(s==12, print1((N\100)-1, ", ")); s=1; N=100*(p\100+1), s++)) \\ Charles R Greathouse IV, Feb 21 2011
Previous Showing 11-20 of 24 results. Next