cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 80 results. Next

A191129 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x and 4x+1 are in a.

Original entry on oeis.org

1, 3, 5, 9, 13, 15, 21, 27, 37, 39, 45, 53, 61, 63, 81, 85, 109, 111, 117, 135, 149, 157, 159, 181, 183, 189, 213, 243, 245, 253, 255, 325, 327, 333, 341, 351, 405, 437, 445, 447, 469, 471, 477, 541, 543, 549, 567, 597, 629, 637, 639, 725, 729, 733, 735, 757, 759, 765, 853, 973, 975, 981, 999, 1013, 1021, 1023, 1053, 1215, 1301
Offset: 1

Views

Author

Clark Kimberling, May 27 2011

Keywords

Comments

See A191113.

Crossrefs

Cf. A191113.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a191129 n = a191129_list !! (n-1)
    a191129_list = f $ singleton 1
       where f s = m : (f $ insert (3*m) $ insert (4*m+1) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 3; i = 0; j = 4; k = 1; f = 1; g = 9;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]  (* A191129 *)
    b = a/3; c = (a-1)/4; r = Range[1, 1500];
    d = Intersection[b, r] (* A191182 *)
    e = Intersection[c, r] (* A191183 *)

A191138 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x+1 and 4x+3 are in a.

Original entry on oeis.org

1, 4, 7, 13, 19, 22, 31, 40, 55, 58, 67, 79, 91, 94, 121, 127, 163, 166, 175, 202, 223, 235, 238, 271, 274, 283, 319, 364, 367, 379, 382, 487, 490, 499, 511, 526, 607, 655, 667, 670, 703, 706, 715, 811, 814, 823, 850, 895, 943, 955, 958, 1087, 1093, 1099, 1102, 1135, 1138, 1147, 1279, 1459, 1462, 1471, 1498, 1519, 1531, 1534
Offset: 1

Views

Author

Clark Kimberling, May 28 2011

Keywords

Comments

See A191113.

Crossrefs

Cf. A191113.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a191138 n = a191138_list !! (n-1)
    a191138_list = f $ singleton 1
       where f s = m : (f $ insert (3*m+1) $ insert (4*m+3) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 3; i = 1; j = 4; k = 3; f = 1; g = 9;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]   (* A191138 *)
    b = (a - 1)/3; c = (a - 3)/4; r = Range[1, 1500];
    d = Intersection[b, r] (* A191200 *)
    e = Intersection[c, r] (* A191201 *)

A191114 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x-2 and 4x-1 are in a.

Original entry on oeis.org

1, 3, 7, 11, 19, 27, 31, 43, 55, 75, 79, 91, 107, 123, 127, 163, 171, 219, 223, 235, 271, 299, 315, 319, 363, 367, 379, 427, 487, 491, 507, 511, 651, 655, 667, 683, 703, 811, 875, 891, 895, 939, 943, 955, 1083, 1087, 1099, 1135, 1195, 1259, 1275, 1279, 1451, 1459, 1467, 1471, 1515, 1519, 1531, 1707, 1947, 1951, 1963, 1999
Offset: 1

Views

Author

Clark Kimberling, May 27 2011

Keywords

Comments

See A191113.

Crossrefs

Cf. A191113.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a191114 n = a191114_list !! (n-1)
    a191114_list = 1 : f (singleton 3)
       where f s = m : (f $ insert (3*m-2) $ insert (4*m-1) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 3; i = -2; j = 4; k = -1; f = 1; g = 8;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]  (* A191114 *)
    b = (a + 2)/3; c = (a + 1)/4; r = Range[1, 1200];
    d = Intersection[b, r] (* A191121 *)
    e = Intersection[c, r] (* A191152 *)
    m = (a + 1)/2  (* divisibility property *)
    p = (a + 1)/4  (* divisibility property *)

A191117 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x-2 and 4x+2 are in a.

Original entry on oeis.org

1, 6, 16, 26, 46, 66, 76, 106, 136, 186, 196, 226, 266, 306, 316, 406, 426, 546, 556, 586, 676, 746, 786, 796, 906, 916, 946, 1066, 1216, 1226, 1266, 1276, 1626, 1636, 1666, 1706, 1756, 2026, 2186, 2226, 2236, 2346, 2356, 2386, 2706, 2716, 2746, 2836, 2986, 3146, 3186, 3196, 3626, 3646, 3666, 3676, 3786, 3796, 3826
Offset: 1

Views

Author

Clark Kimberling, May 27 2011

Keywords

Comments

See A191113.

Crossrefs

Cf. A191113.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a191117 n = a191117_list !! (n-1)
    a191117_list = 1 : f (singleton 6)
       where f s = m : (f $ insert (3*m-2) $ insert (4*m+2) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 3; i = -2; j = 4; k = 2; f = 1; g = 9;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]  (* A191117 *)
    b = (a + 2)/3; c = (a - 2)/4; r = Range[1, 1500];
    d = Intersection[b, r] (* A191157 *)
    e = Intersection[c, r] (* A191158 *)
    m = (a + 4)/10  (* divisibility property *)

A191122 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x-1 and 4x are in a.

Original entry on oeis.org

1, 2, 4, 5, 8, 11, 14, 16, 20, 23, 32, 41, 44, 47, 56, 59, 64, 68, 80, 92, 95, 122, 128, 131, 140, 164, 167, 176, 188, 191, 203, 224, 236, 239, 256, 272, 275, 284, 320, 365, 368, 380, 383, 392, 419, 488, 491, 500, 512, 524, 527, 560, 563, 572, 608, 656, 668, 671, 704, 707, 716, 752, 764, 767, 812, 815, 824, 851, 896, 944, 956, 959
Offset: 1

Views

Author

Clark Kimberling, May 27 2011

Keywords

Comments

See A191113.

Crossrefs

Cf. A191113.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a191122 n = a191122_list !! (n-1)
    a191122_list = f $ singleton 1
       where f s = m : (f $ insert (3*m-1) $ insert (4*m) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 3; i = -1; j = 4; k = 0; f = 1; g = 9;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]  (* A191122 *)
    b = (a + 1)/3; c = a/4; r = Range[1, 1500];
    d = Intersection[b, r] (* A191168 *)
    e = Intersection[c, r] (* A191169 *)

A191123 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x-1 and 4x+1 are in a.

Original entry on oeis.org

1, 2, 5, 9, 14, 21, 26, 37, 41, 57, 62, 77, 85, 105, 110, 122, 149, 165, 170, 185, 229, 230, 249, 254, 309, 314, 329, 341, 365, 421, 441, 446, 489, 494, 509, 554, 597, 661, 681, 686, 689, 741, 746, 761, 917, 921, 926, 941, 986, 997, 1017, 1022, 1094, 1237, 1257, 1262, 1317, 1322, 1337, 1365, 1461, 1466, 1481, 1526, 1661, 1685
Offset: 1

Views

Author

Clark Kimberling, May 27 2011

Keywords

Comments

See A191113.

Crossrefs

Cf. A191113.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a191123 n = a191123_list !! (n-1)
    a191123_list = f $ singleton 1
       where f s = m : (f $ insert (3*m-1) $ insert (4*m+1) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 3; i = -1; j = 4; k = 1; f = 1; g = 9;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]  (* A191123 *)
    b = (a + 1)/3; c = (a - 1)/4; r = Range[1, 1500];
    d = Intersection[b, r] (* A191170 *)
    e = Intersection[c, r] (* A191171 *)

A191124 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x-1 and 4x+2 are in a.

Original entry on oeis.org

1, 2, 5, 6, 10, 14, 17, 22, 26, 29, 41, 42, 50, 58, 65, 70, 77, 86, 90, 106, 118, 122, 125, 149, 166, 170, 173, 194, 202, 209, 230, 234, 257, 262, 269, 282, 310, 317, 346, 353, 362, 365, 374, 426, 446, 474, 490, 497, 502, 509, 518, 581, 598, 605, 626, 666, 682, 689, 694, 701, 770, 778, 785, 806, 810, 838, 845, 922, 929, 938, 950
Offset: 1

Views

Author

Clark Kimberling, May 27 2011

Keywords

Comments

See A191113.

Crossrefs

Cf. A191113.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a191124 n = a191124_list !! (n-1)
    a191124_list = f $ singleton 1
       where f s = m : (f $ insert (3*m-1) $ insert (4*m+2) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 3; i = -1; j = 4; k = 2; f = 1; g = 9;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]  (* A191124 *)
    b = (a + 1)/3; c = (a - 2)/4; r = Range[1, 1500];
    d = Intersection[b, r] (* A191172 *)
    e = Intersection[c, r] (* A191173 *)
    f[m_]:=Flatten[{3#-1,4#+2}&/@m]; Take[Flatten[NestList[f,{1},10]]//Union,100] (* Harvey P. Dale, Feb 11 2025 *)

A191125 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x-1 and 4x+3 are in a.

Original entry on oeis.org

1, 2, 5, 7, 11, 14, 20, 23, 31, 32, 41, 47, 59, 68, 83, 92, 95, 122, 127, 131, 140, 167, 176, 191, 203, 239, 248, 275, 284, 335, 365, 371, 380, 383, 392, 419, 491, 500, 511, 527, 563, 572, 608, 671, 707, 716, 743, 767, 815, 824, 851, 959, 995, 1004, 1094, 1103, 1112, 1139, 1148, 1175, 1256, 1343, 1463, 1472, 1487, 1499, 1523
Offset: 1

Views

Author

Clark Kimberling, May 27 2011

Keywords

Comments

See A191113.

Crossrefs

Cf. A191113.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a191125 n = a191125_list !! (n-1)
    a191125_list = f $ singleton 1
       where f s = m : (f $ insert (3*m-1) $ insert (4*m+3) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 3; i = -1; j = 4; k = 3; f = 1; g = 9;
    a = Union[
      Flatten[NestList[{h # + i, j # + k} &, f, g]]]  (* A191125 *)
    b = (a + 1)/3; c = (a - 3)/4; r = Range[1, 1500];
    d = Intersection[b, r] (* A191174 *)
    e = Intersection[c, r] (* A191175 *)

A191127 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x and 4x-2 are in a.

Original entry on oeis.org

1, 2, 3, 6, 9, 10, 18, 22, 27, 30, 34, 38, 54, 66, 70, 81, 86, 90, 102, 106, 114, 118, 134, 150, 162, 198, 210, 214, 243, 258, 262, 270, 278, 306, 318, 322, 342, 354, 358, 402, 406, 422, 450, 454, 470, 486, 534, 594, 598, 630, 642, 646, 729, 774, 786, 790, 810, 834, 838, 854, 918, 954, 966, 970, 1026, 1030, 1046, 1062, 1074, 1078
Offset: 1

Views

Author

Clark Kimberling, May 27 2011

Keywords

Comments

See A191113.

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a191127 n = a191127_list !! (n-1)
    a191127_list = f $ singleton 1
       where f s = m : (f $ insert (3*m) $ insert (4*m-2) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 3; i = 0; j = 4; k = -2; f = 1; g = 9;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]  (* A191127 *)
    b = a/3; c = (a + 2)/4; r = Range[1, 1500];
    d = Intersection[b, r] (* A191178 *)
    e = Intersection[c, r] (* A191179 *)
    Nest[Flatten[{#,3#,4#-2}]&,1,7]//Union (* Harvey P. Dale, Jul 20 2021 *)

A191128 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x and 4x-1 are in a.

Original entry on oeis.org

1, 3, 9, 11, 27, 33, 35, 43, 81, 99, 105, 107, 129, 131, 139, 171, 243, 297, 315, 321, 323, 387, 393, 395, 417, 419, 427, 513, 515, 523, 555, 683, 729, 891, 945, 963, 969, 971, 1161, 1179, 1185, 1187, 1251, 1257, 1259, 1281, 1283, 1291, 1539, 1545, 1547, 1569, 1571, 1579, 1665, 1667, 1675, 1707, 2049, 2051, 2059, 2091, 2187
Offset: 1

Views

Author

Clark Kimberling, May 27 2011

Keywords

Comments

See A191113.

Crossrefs

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a191128 n = a191128_list !! (n-1)
    a191128_list = f $ singleton 1
       where f s = m : (f $ insert (3*m) $ insert (4*m-1) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 3; i = 0; j = 4; k = -1; f = 1; g = 9;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]  (* A191128 *)
    b = a/3; c = (a + 1)/4; r = Range[1, 1500];
    d = Intersection[b, r] (* A191180 *)
    e = Intersection[c, r] (* A191181 *)
    m = (a + 1)/2  (* divisibility property *)
Previous Showing 11-20 of 80 results. Next