cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 80 results. Next

A191116 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x-2 and 4x+1 are in a.

Original entry on oeis.org

1, 5, 13, 21, 37, 53, 61, 85, 109, 149, 157, 181, 213, 245, 253, 325, 341, 437, 445, 469, 541, 597, 629, 637, 725, 733, 757, 853, 973, 981, 1013, 1021, 1301, 1309, 1333, 1365, 1405, 1621, 1749, 1781, 1789, 1877, 1885, 1909, 2165, 2173, 2197, 2269, 2389, 2517, 2549, 2557, 2901, 2917, 2933, 2941, 3029, 3037, 3061, 3413
Offset: 1

Views

Author

Clark Kimberling, May 27 2011

Keywords

Comments

See A191113.

Crossrefs

Cf. A191113.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a191116 n = a191116_list !! (n-1)
    a191116_list = 1 : f (singleton 5)
       where f s = m : (f $ insert (3*m-2) $ insert (4*m+1) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 3; i = -2; j = 4; k = 1; f = 1; g = 9;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]  (* A191116 *)
    b = (a + 2)/3; c = (a - 1)/4; r = Range[1, 1500];
    d = Intersection[b, r] (* A191155 *)
    e = Intersection[c, r] (* A191129 *)
    m = (a + 1)/2  (* divisibility property *)
    p = (a + 3)/4  (* divisibility property *)
    q = (a + 3)/8  (* divisibility property *)

A191126 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x and 4x-3 are in a.

Original entry on oeis.org

1, 3, 9, 27, 33, 81, 99, 105, 129, 243, 297, 315, 321, 387, 393, 417, 513, 729, 891, 945, 963, 969, 1161, 1179, 1185, 1251, 1257, 1281, 1539, 1545, 1569, 1665, 2049, 2187, 2673, 2835, 2889, 2907, 2913, 3483, 3537, 3555, 3561, 3753, 3771, 3777, 3843, 3849, 3873, 4617, 4635, 4641, 4707, 4713, 4737, 4995, 5001, 5025, 5121
Offset: 1

Views

Author

Clark Kimberling, May 27 2011

Keywords

Comments

See A191113.

Crossrefs

Cf. A191113.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a191126 n = a191126_list !! (n-1)
    a191126_list = 1 : f (singleton 3)
       where f s = m : (f $ insert (3*m) $ insert (4*m-3) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 3; i = 0; j = 4; k = -3; f = 1; g = 9;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]  (* A191126 *)
    b = a/3; c = (a + 3)/4; r = Range[1, 1500];
    d = Intersection[b, r] (* A191176 *)
    e = Intersection[c, r] (* A191177 *)
    m = a/3   (* divisibility property *)
    p = (a + 3)/6  (* divisibility property *)

A191132 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x+1 and 4x-3 are in a.

Original entry on oeis.org

1, 4, 13, 40, 49, 121, 148, 157, 193, 364, 445, 472, 481, 580, 589, 625, 769, 1093, 1336, 1417, 1444, 1453, 1741, 1768, 1777, 1876, 1885, 1921, 2308, 2317, 2353, 2497, 3073, 3280, 4009, 4252, 4333, 4360, 4369, 5224, 5305, 5332, 5341, 5629, 5656, 5665, 5764, 5773, 5809, 6925, 6952, 6961, 7060, 7069, 7105, 7492, 7501
Offset: 1

Views

Author

Clark Kimberling, May 27 2011

Keywords

Comments

See A191113.

Crossrefs

Cf. A191113.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a191132 n = a191132_list !! (n-1)
    a191132_list = 1 : f (singleton 4)
       where f s = m : (f $ insert (3*m+1) $ insert (4*m-3) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 3; i = 1; j = 4; k = -3; f = 1; g = 9;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]   (* A191132 *)
    b = (a - 1)/3; c = (a + 3)/4; r = Range[1, 2500];
    d = Intersection[b, r] (* A191188 *)
    e = Intersection[c, r] (* A191189 *)

A191135 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x+1 and 4x are in a.

Original entry on oeis.org

1, 4, 13, 16, 40, 49, 52, 64, 121, 148, 157, 160, 193, 196, 208, 256, 364, 445, 472, 481, 484, 580, 589, 592, 625, 628, 640, 769, 772, 784, 832, 1024, 1093, 1336, 1417, 1444, 1453, 1456, 1741, 1768, 1777, 1780, 1876, 1885, 1888, 1921, 1924, 1936, 2308, 2317, 2320, 2353, 2356, 2368, 2497, 2500, 2512, 2560, 3073, 3076
Offset: 1

Views

Author

Clark Kimberling, May 28 2011

Keywords

Comments

See A191113.

Crossrefs

Cf. A191113.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a191135 n = a191135_list !! (n-1)
    a191135_list = f $ singleton 1
       where f s = m : (f $ insert (3*m+1) $ insert (4*m) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 3; i = 1; j = 4; k = 0; f = 1; g = 9;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]   (* A191135 *)
    b = (a - 1)/3; c = a/4; r = Range[1, 1500];
    d = Intersection[b, r] (* A191136 *)
    e = Intersection[c, r] (* A191195 *)

A191168 Integers in (1+A191122)/3; contains A191122 as a proper subsequence.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 11, 14, 15, 16, 19, 20, 23, 27, 31, 32, 41, 43, 44, 47, 55, 56, 59, 63, 64, 68, 75, 79, 80, 91, 92, 95, 107, 122, 123, 127, 128, 131, 140, 163, 164, 167, 171, 175, 176, 187, 188, 191, 203, 219, 223, 224, 235, 236, 239, 251, 255, 256, 271, 272, 275, 284, 299, 315, 319, 320, 363, 365, 367, 368, 379, 380, 383, 392, 419
Offset: 1

Views

Author

Clark Kimberling, May 27 2011

Keywords

Comments

See A191122.

Crossrefs

Programs

A191172 Integers in (1+A191124)/3; contains A191124 as a proper subsequence.

Original entry on oeis.org

1, 2, 5, 6, 9, 10, 14, 17, 22, 26, 29, 41, 42, 50, 57, 58, 65, 70, 77, 86, 90, 106, 118, 121, 122, 125, 149, 166, 170, 173, 194, 202, 209, 230, 234, 257, 262, 269, 282, 310, 313, 317, 346, 353, 362, 365, 374, 377, 426, 446, 474, 490, 497, 502, 509, 518, 569, 581, 598, 605, 626, 633, 666, 682, 689, 694, 701, 770, 778, 785, 806, 810
Offset: 1

Views

Author

Clark Kimberling, May 27 2011

Keywords

Comments

See A191124 and A191113.

Crossrefs

Programs

A191183 Integers in (-1+A191129)/4; contains A191129 as a proper subsequence.

Original entry on oeis.org

1, 2, 3, 5, 9, 11, 13, 15, 20, 21, 27, 29, 37, 39, 45, 47, 53, 61, 63, 81, 83, 85, 101, 109, 111, 117, 119, 135, 137, 149, 157, 159, 181, 182, 183, 189, 191, 213, 243, 245, 253, 255, 263, 325, 327, 333, 335, 341, 351, 353, 405, 407, 425, 437, 445, 447, 469, 471, 477, 479, 541, 543, 549, 551, 567, 569, 597, 629, 637, 639, 725, 729
Offset: 1

Views

Author

Clark Kimberling, May 27 2011

Keywords

Comments

Crossrefs

Programs

A191200 Integers in (-1+A191138)/3; contains A191138 as a proper subsequence.

Original entry on oeis.org

1, 2, 4, 6, 7, 10, 13, 18, 19, 22, 26, 30, 31, 40, 42, 54, 55, 58, 67, 74, 78, 79, 90, 91, 94, 106, 121, 122, 126, 127, 162, 163, 166, 170, 175, 202, 218, 222, 223, 234, 235, 238, 270, 271, 274, 283, 298, 314, 318, 319, 362, 364, 366, 367, 378, 379, 382, 426, 486, 487, 490, 499, 506, 510, 511, 526, 607, 650, 654, 655, 666, 667, 670
Offset: 1

Views

Author

Clark Kimberling, May 28 2011

Keywords

Comments

See A191138.

Crossrefs

Programs

A191118 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x-2 and 4x+3 are in a.

Original entry on oeis.org

1, 7, 19, 31, 55, 79, 91, 127, 163, 223, 235, 271, 319, 367, 379, 487, 511, 655, 667, 703, 811, 895, 943, 955, 1087, 1099, 1135, 1279, 1459, 1471, 1519, 1531, 1951, 1963, 1999, 2047, 2107, 2431, 2623, 2671, 2683, 2815, 2827, 2863, 3247, 3259, 3295, 3403, 3583, 3775, 3823, 3835, 4351, 4375, 4399, 4411, 4543, 4555, 4591
Offset: 1

Views

Author

Clark Kimberling, May 27 2011

Keywords

Comments

See A191113.

Crossrefs

Cf. A191113.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a191118 n = a191118_list !! (n-1)
    a191118_list = 1 : f (singleton 7)
       where f s = m : (f $ insert (3*m-2) $ insert (4*m+3) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 3; i = -2; j = 4; k = 3; f = 1; g = 9;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]  (* A191118 *)
    b = (a + 2)/3; c = (a - 3)/4; r = Range[1, 1500];
    d = Intersection[b, r] (* A191114 *)
    e = Intersection[c, r] (* A191138 *)

A191139 Increasing sequence generated by these rules: a(1)=1, and if x is in a then 3x+2 and 4x-3 are in a.

Original entry on oeis.org

1, 5, 17, 53, 65, 161, 197, 209, 257, 485, 593, 629, 641, 773, 785, 833, 1025, 1457, 1781, 1889, 1925, 1937, 2321, 2357, 2369, 2501, 2513, 2561, 3077, 3089, 3137, 3329, 4097, 4373, 5345, 5669, 5777, 5813, 5825, 6965, 7073, 7109, 7121, 7505, 7541, 7553, 7685, 7697, 7745, 9233, 9269, 9281, 9413, 9425, 9473, 9989, 10001
Offset: 1

Views

Author

Clark Kimberling, May 28 2011

Keywords

Comments

See A191113.

Crossrefs

Cf. A191113.

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a191139 n = a191139_list !! (n-1)
    a191139_list = 1 : f (singleton 5)
       where f s = m : (f $ insert (3*m+2) $ insert (4*m-3) s')
                 where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 01 2011
  • Mathematica
    h = 3; i = 2; j = 4; k = -3; f = 1; g = 9;
    a = Union[Flatten[NestList[{h # + i, j # + k} &, f, g]]]   (* A191139 *)
    b = (a - 2)/3; c = (a + 3)/4; r = Range[1, 1500];
    d = Intersection[b, r] (* A191143 *)
    e = Intersection[c, r] (* A191119 *)
Previous Showing 31-40 of 80 results. Next