cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 90 results. Next

A080164 Wythoff difference array, D={d(i,j)}, by antidiagonals.

Original entry on oeis.org

1, 2, 3, 5, 7, 4, 13, 18, 10, 6, 34, 47, 26, 15, 8, 89, 123, 68, 39, 20, 9, 233, 322, 178, 102, 52, 23, 11, 610, 843, 466, 267, 136, 60, 28, 12, 1597, 2207, 1220, 699, 356, 157, 73, 31, 14, 4181, 5778, 3194, 1830, 932, 411, 191, 81, 36, 16, 10946, 15127, 8362, 4791, 2440
Offset: 1

Views

Author

Clark Kimberling, Feb 08 2003

Keywords

Comments

D is an interspersion formed by differences between Wythoff pairs in the Wythoff array W={w(i,j)}=A035513 (indexed so that i and j start at 1): d(i,j)=w(i,2j)-w(i,2j-1).
The difference between adjacent column terms is a Fibonacci number: d(i+1,j)-d(i,j) is F(2j) or F(2j+1).
Every term in column 1 of W is in column 1 of D; moreover, in row i of D, every term except the first is in row i of W.
Let W' be the array remaining when all the odd-numbered columns of W are removed from W. The rank array of W' (obtained by replacing each w'(i,j) by its rank when all the numbers w'(h,k) are arranged in increasing order) is D.
Let W" be the array remaining when all the even-numbered columns of W are removed from W; the rank array of W" is D.
Let D' be the array remaining when column 1 of D is removed; the rank array of D' is D.
Let E be the array {e(i,j)} given by e(i,j)=d(i,2j)-d(i,2j-1); the rank array of E is D.
D is the dispersion of the sequence u given by u(n)=n+floor(n*x), where x=(golden ratio); that is, D is the dispersion of the upper Wythoff sequence, A001950. For a discussion of dispersions, see A191426.
In column 1, F(2n) is in position F(2n-1) - Clark Kimberling, Jul 15 2016

Examples

			Northwest corner:
1   2   5   13   34   89
3   7   18  47   123  322
4   10  26  68   178  466
6   15  39  102  267  699
8   20  52  136  356  932
9   23  60  157  411  1076
		

References

  • Clark Kimberling, The Wythoff difference array, in Applications of Fibonacci Numbers, vol.10, Proceedings of the Eleventh International Conference on Fibonacci Numbers and Their Applications, William Webb, editor, Congressus Numerantium, Winnipeg, Manitoba 194 (2009) 153-158.

Crossrefs

Programs

  • Mathematica
    (* program generates the dispersion array T of the complement of increasing sequence f[n] *)
    r = 40; r1 = 12; (* r=# rows of T, r1=# rows to show *)
    c = 40; c1 = 12; (* c=# cols of T, c1=# cols to show *)
    x = 1 + GoldenRatio; f[n_] := Floor[n*x]
    (* f(n) is complement of column 1 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]]
    (* A080164 as an array *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]]
    (* A080164 as a sequence *)
    (* Program by Peter J. C. Moses, Jun 01 2011, added here by Clark Kimberling, Jun 03 2011 *)

Formula

d(i, j)=[i*tau]F(2j-1)+(i-1)F(2j-2), where F=A000045 (Fibonacci numbers). d(i, j)=[tau*d(i, j-1)]+d(i, j-1) for i>=2. d(i, j)=3d(i, j-1)-d(i, j-2) for i>=3.

A191703 Dispersion of A016861, (5k+1), by antidiagonals.

Original entry on oeis.org

1, 6, 2, 31, 11, 3, 156, 56, 16, 4, 781, 281, 81, 21, 5, 3906, 1406, 406, 106, 26, 7, 19531, 7031, 2031, 531, 131, 36, 8, 97656, 35156, 10156, 2656, 656, 181, 41, 9, 488281, 175781, 50781, 13281, 3281, 906, 206, 46, 10, 2441406, 878906, 253906, 66406, 16406
Offset: 1

Views

Author

Clark Kimberling, Jun 12 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3 or mod 4, see A191655, A191663, A191667.
...
Each of the sequences (5n, n>1), (5n+1, n>1), (5n+2, n>=0), (5n+3, n>=0), (5n+4, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The ten sequences and dispersions are listed here:
...
A191702=dispersion of A008587 (5k, k>=1)
A191703=dispersion of A016861 (5k+1, k>=1)
A191704=dispersion of A016873 (5k+2, k>=0)
A191705=dispersion of A016885 (5k+3, k>=0)
A191706=dispersion of A016897 (5k+4, k>=0)
A191707=dispersion of A047201 (1, 2, 3, 4 mod 5 and >1)
A191708=dispersion of A047202 (0, 2, 3, 4 mod 5 and >1)
A191709=dispersion of A047207 (0, 1, 3, 4 mod 5 and >1)
A191710=dispersion of A032763 (0, 1, 2, 4 mod 5 and >1)
A191711=dispersion of A001068 (0, 1, 2, 3 mod 5 and >1)
...
EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
A191702 has 1st col A047201, all else A008587
A191703 has 1st col A047202, all else A016861
A191704 has 1st col A047207, all else A016873
A191705 has 1st col A032763, all else A016885
A191706 has 1st col A001068, all else A016897
A191707 has 1st col A008587, all else A047201
A191708 has 1st col A042968, all else A047203
A191709 has 1st col A042968, all else A047207
A191710 has 1st col A042968, all else A032763
A191711 has 1st col A042968, all else A001068
...
Regarding the dispersions A191670-A191673, there is a formula for sequences of the type "(a or b or c or d mod m)", (as in the relevant Mathematica programs):
...
If f(n)=(n mod 3), then (a,b,c,d,a,b,c,d,a,b,c,d,...) is given by a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n); so that for n>=1, "(a, b, c, d mod m)" is given by
a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n)+m*floor((n-1)/4)).

Examples

			Northwest corner:
1...6... 31....156...781
2...11...56....281...1406
3...16...81....406...2031
4...21...106...531...2656
5...26...131...656...3281
7...36...181...906...4531
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    f[n_] := 5n+1
    Table[f[n], {n, 1, 30}]  (* A016861 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191703 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191703 *)

A191704 Dispersion of A016873, (5k+2), by antidiagonals.

Original entry on oeis.org

1, 2, 3, 7, 12, 4, 32, 57, 17, 5, 157, 282, 82, 22, 6, 782, 1407, 407, 107, 27, 8, 3907, 7032, 2032, 532, 132, 37, 9, 19532, 35157, 10157, 2657, 657, 182, 42, 10, 97657, 175782, 50782, 13282, 3282, 907, 207, 47, 11, 488282, 878907, 253907, 66407, 16407, 4532
Offset: 1

Views

Author

Clark Kimberling, Jun 12 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3 or mod 4, see A191655, A191663, A191667.
...
Each of the sequences (5n, n>1), (5n+1, n>1), (5n+2, n>=0), (5n+3, n>=0), (5n+4, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The ten sequences and dispersions are listed here:
...
A191702=dispersion of A008587 (5k, k>=1)
A191703=dispersion of A016861 (5k+1, k>=1)
A191704=dispersion of A016873 (5k+2, k>=0)
A191705=dispersion of A016885 (5k+3, k>=0)
A191706=dispersion of A016897 (5k+4, k>=0)
A191707=dispersion of A047201 (1, 2, 3, 4 mod 5 and >1)
A191708=dispersion of A047202 (0, 2, 3, 4 mod 5 and >1)
A191709=dispersion of A047207 (0, 1, 3, 4 mod 5 and >1)
A191710=dispersion of A032763 (0, 1, 2, 4 mod 5 and >1)
A191711=dispersion of A001068 (0, 1, 2, 3 mod 5 and >1)
...
EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
A191702 has 1st col A047201, all else A008587
A191703 has 1st col A047202, all else A016861
A191704 has 1st col A047207, all else A016873
A191705 has 1st col A032763, all else A016885
A191706 has 1st col A001068, all else A016897
A191707 has 1st col A008587, all else A047201
A191708 has 1st col A042968, all else A047203
A191709 has 1st col A042968, all else A047207
A191710 has 1st col A042968, all else A032763
A191711 has 1st col A042968, all else A001068
...
Regarding the dispersions A191670-A191673, there is a formula for sequences of the type "(a or b or c or d mod m)", (as in the relevant Mathematica programs):
...
If f(n)=(n mod 3), then (a,b,c,d,a,b,c,d,a,b,c,d,...) is given by a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n); so that for n>=1, "(a, b, c, d mod m)" is given by
a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n)+m*floor((n-1)/4)).

Examples

			Northwest corner:
1...2....7.....32....157
3...12...57....282...1407
4...17...82....407...2032
5...22...107...532...2657
6...27...132...657...3282
6...37...182...907...4532
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    f[n_] := 5n-3
    Table[f[n], {n, 1, 30}] (* A016873 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191704 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191704 *)

A191705 Dispersion of A016873, (5k+3), by antidiagonals.

Original entry on oeis.org

1, 3, 2, 13, 8, 4, 63, 38, 18, 5, 313, 188, 88, 23, 6, 1563, 938, 438, 113, 28, 7, 7813, 4688, 2188, 563, 138, 33, 9, 39063, 23438, 10938, 2813, 688, 163, 43, 10, 195313, 117188, 54688, 14063, 3438, 813, 213, 48, 11, 976563, 585938, 273438, 70313, 17188
Offset: 1

Views

Author

Clark Kimberling, Jun 12 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3 or mod 4, see A191655, A191663, A191667.
...
Each of the sequences (5n, n>1), (5n+1, n>1), (5n+2, n>=0), (5n+3, n>=0), (5n+4, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The ten sequences and dispersions are listed here:
...
A191702=dispersion of A008587 (5k, k>=1)
A191703=dispersion of A016861 (5k+1, k>=1)
A191704=dispersion of A016873 (5k+2, k>=0)
A191705=dispersion of A016885 (5k+3, k>=0)
A191706=dispersion of A016897 (5k+4, k>=0)
A191707=dispersion of A047201 (1, 2, 3, 4 mod 5 and >1)
A191708=dispersion of A047202 (0, 2, 3, 4 mod 5 and >1)
A191709=dispersion of A047207 (0, 1, 3, 4 mod 5 and >1)
A191710=dispersion of A032763 (0, 1, 2, 4 mod 5 and >1)
A191711=dispersion of A001068 (0, 1, 2, 3 mod 5 and >1)
...
EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
A191702 has 1st col A047201, all else A008587
A191703 has 1st col A047202, all else A016861
A191704 has 1st col A047207, all else A016873
A191705 has 1st col A032763, all else A016885
A191706 has 1st col A001068, all else A016897
A191707 has 1st col A008587, all else A047201
A191708 has 1st col A042968, all else A047203
A191709 has 1st col A042968, all else A047207
A191710 has 1st col A042968, all else A032763
A191711 has 1st col A042968, all else A001068
...
Regarding the dispersions A191670-A191673, there is a formula for sequences of the type "(a or b or c or d mod m)", (as in the relevant Mathematica programs):
...
If f(n)=(n mod 3), then (a,b,c,d,a,b,c,d,a,b,c,d,...) is given by a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n); so that for n>=1, "(a, b, c, d mod m)" is given by a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n)+m*floor((n-1)/4)).

Examples

			Northwest corner:
1...3....13....63....313
2...8....38....188...938
4...18...88....438...2188
5...23...113...563...2813
6...28...138...688...3438
7...33...163...813...4063
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    f[n_] := 5n-2
    Table[f[n], {n, 1, 30}] (* A016885 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191705 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191705 *)

A191706 Dispersion of A016873, (5k+4), by antidiagonals.

Original entry on oeis.org

1, 4, 2, 19, 9, 3, 94, 44, 14, 5, 469, 219, 69, 24, 6, 2344, 1094, 344, 119, 29, 7, 11719, 5469, 1719, 594, 144, 34, 8, 58594, 27344, 8594, 2969, 719, 169, 39, 10, 292969, 136719, 42969, 14844, 3594, 844, 194, 49, 11, 1464844, 683594, 214844, 74219, 17969
Offset: 1

Views

Author

Clark Kimberling, Jun 12 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3 or mod 4, see A191655, A191663, A191667.
...
Each of the sequences (5n, n>1), (5n+1, n>1), (5n+2, n>=0), (5n+3, n>=0), (5n+4, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The ten sequences and dispersions are listed here:
...
A191702=dispersion of A008587 (5k, k>=1)
A191703=dispersion of A016861 (5k+1, k>=1)
A191704=dispersion of A016873 (5k+2, k>=0)
A191705=dispersion of A016885 (5k+3, k>=0)
A191706=dispersion of A016897 (5k+4, k>=0)
A191707=dispersion of A047201 (1, 2, 3, 4 mod 5 and >1)
A191708=dispersion of A047202 (0, 2, 3, 4 mod 5 and >1)
A191709=dispersion of A047207 (0, 1, 3, 4 mod 5 and >1)
A191710=dispersion of A032763 (0, 1, 2, 4 mod 5 and >1)
A191711=dispersion of A001068 (0, 1, 2, 3 mod 5 and >1)
...
EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
A191702 has 1st col A047201, all else A008587
A191703 has 1st col A047202, all else A016861
A191704 has 1st col A047207, all else A016873
A191705 has 1st col A032763, all else A016885
A191706 has 1st col A001068, all else A016897
A191707 has 1st col A008587, all else A047201
A191708 has 1st col A042968, all else A047203
A191709 has 1st col A042968, all else A047207
A191710 has 1st col A042968, all else A032763
A191711 has 1st col A042968, all else A001068
...
Regarding the dispersions A191670-A191673, there is a formula for sequences of the type "(a or b or c or d mod m)", (as in the relevant Mathematica programs):
...
If f(n)=(n mod 3), then (a,b,c,d,a,b,c,d,a,b,c,d,...) is given by a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n); so that for n>=1, "(a, b, c, d mod m)" is given by
a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n)+m*floor((n-1)/4)).

Examples

			Northwest corner:
1...4....19....94....469
2...9....44....219...1094
3...14...69....344...1719
5...24...119...594...2969
6...29...144...719...3594
7...34...169...844...4219
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    f[n_] := 5n-1
    Table[f[n], {n, 1, 30}] (* A016897 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191706 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191706 *)

A191707 Dispersion of A016873, (numbers >1 and congruent to 1, 2, 3, or 4 mod 5), by antidiagonals.

Original entry on oeis.org

1, 2, 5, 3, 7, 10, 4, 9, 13, 15, 6, 12, 17, 19, 20, 8, 16, 22, 24, 26, 25, 11, 21, 28, 31, 33, 32, 30, 14, 27, 36, 39, 42, 41, 38, 35, 18, 34, 46, 49, 53, 52, 48, 44, 40, 23, 43, 58, 62, 67, 66, 61, 56, 51, 45, 29, 54, 73, 78, 84, 83, 77, 71, 64, 57, 50, 37
Offset: 1

Views

Author

Clark Kimberling, Jun 12 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3 or mod 4, see A191655, A191663, A191667.
...
Each of the sequences (5n, n>1), (5n+1, n>1), (5n+2, n>=0), (5n+3, n>=0), (5n+4, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The ten sequences and dispersions are listed here:
...
A191702=dispersion of A008587 (5k, k>=1)
A191703=dispersion of A016861 (5k+1, k>=1)
A191704=dispersion of A016873 (5k+2, k>=0)
A191705=dispersion of A016885 (5k+3, k>=0)
A191706=dispersion of A016897 (5k+4, k>=0)
A191707=dispersion of A047201 (1, 2, 3, 4 mod 5 and >1)
A191708=dispersion of A047202 (0, 2, 3, 4 mod 5 and >1)
A191709=dispersion of A047207 (0, 1, 3, 4 mod 5 and >1)
A191710=dispersion of A032763 (0, 1, 2, 4 mod 5 and >1)
A191711=dispersion of A001068 (0, 1, 2, 3 mod 5 and >1)
...
EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
A191702 has 1st col A047201, all else A008587
A191703 has 1st col A047202, all else A016861
A191704 has 1st col A047207, all else A016873
A191705 has 1st col A032763, all else A016885
A191706 has 1st col A001068, all else A016897
A191707 has 1st col A008587, all else A047201
A191708 has 1st col A042968, all else A047203
A191709 has 1st col A042968, all else A047207
A191710 has 1st col A042968, all else A032763
A191711 has 1st col A042968, all else A001068
...
Regarding the dispersions A191670-A191673, there is a formula for sequences of the type "(a or b or c or d mod m)", (as in the relevant Mathematica programs):
...
If f(n)=(n mod 3), then (a,b,c,d,a,b,c,d,a,b,c,d,...) is given by a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n); so that for n>=1, "(a, b, c, d mod m)" is given by
a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n)+m*floor((n-1)/4)).

Examples

			Northwest corner:
1....2....3....4....6
5....7....9....12...16
10...13...17...22...28
15...19...24...31...39
20...26...33...42...53
25...32...41...52...66
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=2; b=3; c2=4; d=6; m[n_]:=If[Mod[n,4]==0,1,0];
    f[n_]:=a*m[n+3]+b*m[n+2]+c2*m[n+1]+d*m[n]+5*Floor[(n-1)/4]
    Table[f[n], {n, 1, 30}]  (* A047201 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191707 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191707  *)

A191708 Dispersion of A047202, (numbers >1 and congruent to 0, 2, 3, or 4 mod 5), by antidiagonals.

Original entry on oeis.org

1, 2, 6, 3, 8, 11, 4, 10, 14, 16, 5, 13, 18, 20, 21, 7, 17, 23, 25, 27, 26, 9, 22, 29, 32, 34, 33, 31, 12, 28, 37, 40, 43, 42, 39, 36, 15, 35, 47, 50, 54, 53, 49, 45, 41, 19, 44, 59, 63, 68, 67, 62, 57, 52, 46, 24, 55, 74, 79, 85, 84, 78, 72, 65, 58, 51, 30
Offset: 1

Views

Author

Clark Kimberling, Jun 12 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3 or mod 4, see A191655, A191663, A191667.
...
Each of the sequences (5n, n>1), (5n+1, n>1), (5n+2, n>=0), (5n+3, n>=0), (5n+4, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The ten sequences and dispersions are listed here:
...
A191702=dispersion of A008587 (5k, k>=1)
A191703=dispersion of A016861 (5k+1, k>=1)
A191704=dispersion of A016873 (5k+2, k>=0)
A191705=dispersion of A016885 (5k+3, k>=0)
A191706=dispersion of A016897 (5k+4, k>=0)
A191707=dispersion of A047201 (1, 2, 3, 4 mod 5 and >1)
A191708=dispersion of A047202 (0, 2, 3, 4 mod 5 and >1)
A191709=dispersion of A047207 (0, 1, 3, 4 mod 5 and >1)
A191710=dispersion of A032763 (0, 1, 2, 4 mod 5 and >1)
A191711=dispersion of A001068 (0, 1, 2, 3 mod 5 and >1)
...
EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
A191702 has 1st col A047201, all else A008587
A191703 has 1st col A047202, all else A016861
A191704 has 1st col A047207, all else A016873
A191705 has 1st col A032763, all else A016885
A191706 has 1st col A001068, all else A016897
A191707 has 1st col A008587, all else A047201
A191708 has 1st col A042968, all else A047203
A191709 has 1st col A042968, all else A047207
A191710 has 1st col A042968, all else A032763
A191711 has 1st col A042968, all else A001068
...
Regarding the dispersions A191670-A191673, there is a formula for sequences of the type "(a or b or c or d mod m)", (as in the relevant Mathematica programs):
...
If f(n)=(n mod 3), then (a,b,c,d,a,b,c,d,a,b,c,d,...) is given by a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n); so that for n>=1, "(a, b, c, d mod m)" is given by
a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n)+m*floor((n-1)/4)).

Examples

			Northwest corner:
1....2....3....4....5
6....8....10...13...17
11...14...18...23...29
16...20...25...32...40
21...27...34...43...54
26...33...42...53...67
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=2; b=3; c2=4; d=5; m[n_]:=If[Mod[n,4]==0,1,0];
    f[n_]:=a*m[n+3]+b*m[n+2]+c2*m[n+1]+d*m[n]+5*Floor[(n-1)/4]
    Table[f[n], {n, 1, 30}]  (* A047202 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191708 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191708  *)

A191709 Dispersion of A047202, (numbers >1 and congruent to 0, 1, 3, or 4 mod 5), by antidiagonals.

Original entry on oeis.org

1, 3, 2, 5, 4, 7, 8, 6, 10, 12, 11, 9, 14, 16, 17, 15, 13, 19, 21, 23, 22, 20, 18, 25, 28, 30, 29, 27, 26, 24, 33, 36, 39, 38, 35, 32, 34, 31, 43, 46, 50, 49, 45, 41, 37, 44, 40, 55, 59, 64, 63, 58, 53, 48, 42, 56, 51, 70, 75, 81, 80, 74, 68, 61, 54, 47, 71
Offset: 1

Views

Author

Clark Kimberling, Jun 12 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3 or mod 4, see A191655, A191663, A191667.
...
Each of the sequences (5n, n>1), (5n+1, n>1), (5n+2, n>=0), (5n+3, n>=0), (5n+4, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The ten sequences and dispersions are listed here:
...
A191702=dispersion of A008587 (5k, k>=1)
A191703=dispersion of A016861 (5k+1, k>=1)
A191704=dispersion of A016873 (5k+2, k>=0)
A191705=dispersion of A016885 (5k+3, k>=0)
A191706=dispersion of A016897 (5k+4, k>=0)
A191707=dispersion of A047201 (1, 2, 3, 4 mod 5 and >1)
A191708=dispersion of A047202 (0, 2, 3, 4 mod 5 and >1)
A191709=dispersion of A047207 (0, 1, 3, 4 mod 5 and >1)
A191710=dispersion of A032763 (0, 1, 2, 4 mod 5 and >1)
A191711=dispersion of A001068 (0, 1, 2, 3 mod 5 and >1)
...
EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
A191702 has 1st col A047201, all else A008587
A191703 has 1st col A047202, all else A016861
A191704 has 1st col A047207, all else A016873
A191705 has 1st col A032763, all else A016885
A191706 has 1st col A001068, all else A016897
A191707 has 1st col A008587, all else A047201
A191708 has 1st col A042968, all else A047203
A191709 has 1st col A042968, all else A047207
A191710 has 1st col A042968, all else A032763
A191711 has 1st col A042968, all else A001068
...
Regarding the dispersions A191670-A191673, there is a formula for sequences of the type "(a or b or c or d mod m)", (as in the relevant Mathematica programs):
...
If f(n)=(n mod 3), then (a,b,c,d,a,b,c,d,a,b,c,d,...) is given by a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n); so that for n>=1, "(a, b, c, d mod m)" is given by
a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n)+m*floor((n-1)/4)).

Examples

			Northwest corner:
1....3....5....8....11
2....4....6....9....13
7....10...14...19...25
12...16...21...28...36
17...23...30...39...50
22...29...38...49...63
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=3; b=4; c2=5; d=6; m[n_]:=If[Mod[n,4]==0,1,0];
    f[n_]:=a*m[n+3]+b*m[n+2]+c2*m[n+1]+d*m[n]+5*Floor[(n-1)/4]
    Table[f[n], {n, 1, 30}]  (* A047207 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191709 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191709  *)

A191710 Dispersion of A032763, (numbers >1 and congruent to 0, 1, 2, or 4 mod 5), by antidiagonals.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 6, 7, 11, 13, 9, 10, 15, 17, 18, 12, 14, 20, 22, 24, 23, 16, 19, 26, 29, 31, 30, 28, 21, 25, 34, 37, 40, 39, 36, 33, 27, 32, 44, 47, 51, 50, 46, 42, 38, 35, 41, 56, 60, 65, 64, 59, 54, 49, 43, 45, 52, 71, 76, 82, 81, 75, 69, 62, 55, 48, 57
Offset: 1

Views

Author

Clark Kimberling, Jun 12 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3 or mod 4, see A191655, A191663, A191667.
...
Each of the sequences (5n, n>1), (5n+1, n>1), (5n+2, n>=0), (5n+3, n>=0), (5n+4, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The ten sequences and dispersions are listed here:
...
A191702=dispersion of A008587 (5k, k>=1)
A191703=dispersion of A016861 (5k+1, k>=1)
A191704=dispersion of A016873 (5k+2, k>=0)
A191705=dispersion of A016885 (5k+3, k>=0)
A191706=dispersion of A016897 (5k+4, k>=0)
A191707=dispersion of A047201 (1, 2, 3, 4 mod 5 and >1)
A191708=dispersion of A047202 (0, 2, 3, 4 mod 5 and >1)
A191709=dispersion of A047207 (0, 1, 3, 4 mod 5 and >1)
A191710=dispersion of A032763 (0, 1, 2, 4 mod 5 and >1)
A191711=dispersion of A001068 (0, 1, 2, 3 mod 5 and >1)
...
EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
A191702 has 1st col A047201, all else A008587
A191703 has 1st col A047202, all else A016861
A191704 has 1st col A047207, all else A016873
A191705 has 1st col A032763, all else A016885
A191706 has 1st col A001068, all else A016897
A191707 has 1st col A008587, all else A047201
A191708 has 1st col A042968, all else A047203
A191709 has 1st col A042968, all else A047207
A191710 has 1st col A042968, all else A032763
A191711 has 1st col A042968, all else A001068
...
Regarding the dispersions A191670-A191673, there is a formula for sequences of the type "(a or b or c or d mod m)", (as in the relevant Mathematica programs):
...
If f(n)=(n mod 3), then (a,b,c,d,a,b,c,d,a,b,c,d,...) is given by a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n); so that for n>=1, "(a, b, c, d mod m)" is given by
a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n)+m*floor((n-1)/4)).

Examples

			Northwest corner:
1....2....4....6....9
3....5....7....10...14
8....11...15...20...26
13...17...22...29...37
18...24...31...40...51
23...30...39...50...64
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=2; b=4; c2=5; d=6; m[n_]:=If[Mod[n,4]==0,1,0];
    f[n_]:=a*m[n+3]+b*m[n+2]+c2*m[n+1]+d*m[n]+5*Floor[(n-1)/4]
    Table[f[n], {n, 1, 30}]  (* A032763 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191710 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191710  *)

A191711 Dispersion of A001068, (numbers >1 and congruent to 0, 1, 2, or 3 mod 5), by antidiagonals.

Original entry on oeis.org

1, 2, 4, 3, 6, 9, 5, 8, 12, 14, 7, 11, 16, 18, 19, 10, 15, 21, 23, 25, 24, 13, 20, 27, 30, 32, 31, 29, 17, 26, 35, 38, 41, 40, 37, 34, 22, 33, 45, 48, 52, 51, 47, 43, 39, 28, 42, 57, 61, 66, 65, 60, 55, 50, 44, 36, 53, 72, 77, 83, 82, 76, 70, 63, 56, 49, 46
Offset: 1

Views

Author

Clark Kimberling, Jun 12 2011

Keywords

Comments

For a background discussion of dispersions and their fractal sequences, see A191426. For dispersions of congruence sequences mod 3 or mod 4, see A191655, A191663, A191667.
...
Each of the sequences (5n, n>1), (5n+1, n>1), (5n+2, n>=0), (5n+3, n>=0), (5n+4, n>=0), generates a dispersion. Each complement (beginning with its first term >1) also generates a dispersion. The ten sequences and dispersions are listed here:
...
A191702=dispersion of A008587 (5k, k>=1)
A191703=dispersion of A016861 (5k+1, k>=1)
A191704=dispersion of A016873 (5k+2, k>=0)
A191705=dispersion of A016885 (5k+3, k>=0)
A191706=dispersion of A016897 (5k+4, k>=0)
A191707=dispersion of A047201 (1, 2, 3, 4 mod 5 and >1)
A191708=dispersion of A047202 (0, 2, 3, 4 mod 5 and >1)
A191709=dispersion of A047207 (0, 1, 3, 4 mod 5 and >1)
A191710=dispersion of A032763 (0, 1, 2, 4 mod 5 and >1)
A191711=dispersion of A001068 (0, 1, 2, 3 mod 5 and >1)
...
EXCEPT for at most 2 initial terms (so that column 1 always starts with 1):
A191702 has 1st col A047201, all else A008587
A191703 has 1st col A047202, all else A016861
A191704 has 1st col A047207, all else A016873
A191705 has 1st col A032763, all else A016885
A191706 has 1st col A001068, all else A016897
A191707 has 1st col A008587, all else A047201
A191708 has 1st col A042968, all else A047203
A191709 has 1st col A042968, all else A047207
A191710 has 1st col A042968, all else A032763
A191711 has 1st col A042968, all else A001068
...
Regarding the dispersions A191670-A191673, there is a formula for sequences of the type "(a or b or c or d mod m)", (as in the relevant Mathematica programs):
...
If f(n)=(n mod 3), then (a,b,c,d,a,b,c,d,a,b,c,d,...) is given by a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n); so that for n>=1, "(a, b, c, d mod m)" is given by
a*f(n+3)+b*f(n+2)+c*f(n+1)+d*f(n)+m*floor((n-1)/4)).

Examples

			Northwest corner:
1....2....3....5....7
4....6....8....11...15
9....12...16...21...27
14...18...23...30...38
19...25...32...41...52
24...31...40...51...65
		

Crossrefs

Programs

  • Mathematica
    (* Program generates the dispersion array T of the increasing sequence f[n] *)
    r = 40; r1 = 12;  c = 40; c1 = 12;
    a=2; b=3; c2=5; d=6; m[n_]:=If[Mod[n,4]==0,1,0];
    f[n_]:=a*m[n+3]+b*m[n+2]+c2*m[n+1]+d*m[n]+5*Floor[(n-1)/4]
    Table[f[n], {n, 1, 30}]  (* A001068 *)
    mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]
    rows = {NestList[f, 1, c]};
    Do[rows = Append[rows, NestList[f, mex[Flatten[rows]], r]], {r}];
    t[i_, j_] := rows[[i, j]];
    TableForm[Table[t[i, j], {i, 1, 10}, {j, 1, 10}]] (* A191711 *)
    Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A191711  *)
Previous Showing 31-40 of 90 results. Next