cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-16 of 16 results.

A218512 Number of partitions of n in which any two parts differ by at most 10.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 100, 133, 171, 223, 282, 362, 453, 572, 709, 884, 1084, 1337, 1626, 1984, 2394, 2896, 3468, 4162, 4951, 5897, 6972, 8249, 9696, 11402, 13330, 15586, 18131, 21090, 24417, 28264, 32580, 37541, 43097, 49449, 56544
Offset: 0

Views

Author

Alois P. Heinz, Oct 31 2012

Keywords

Crossrefs

Column k=10 of A194621.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n<0 or k<0, 0,
          `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, k-1) +b(n-i, i, k))))
        end:
    a:= n-> `if`(n=0, 1, 0) +add(b(n-i, i, 10), i=1..n):
    seq(a(n), n=0..80);
  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n < 0 || k < 0, 0, If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k - 1] + b[n - i, i, k]]]];
    a[n_] := If[n == 0, 1, 0] + Sum[b[n - i, i, 10], {i, 1, n}];
    Table[a[n], {n, 0, 80}] (* Jean-François Alcover, May 21 2018, translated from Maple *)

Formula

G.f.: 1 + Sum_{j>0} x^j / Product_{i=0..10} (1-x^(i+j)).

A218568 Number of partitions p of n such that max(p)-min(p) = 5.

Original entry on oeis.org

1, 1, 3, 3, 7, 8, 14, 17, 26, 31, 45, 54, 73, 87, 114, 135, 171, 200, 249, 290, 352, 406, 487, 560, 660, 752, 879, 997, 1153, 1298, 1489, 1671, 1900, 2121, 2397, 2665, 2992, 3311, 3701, 4081, 4535, 4982, 5514, 6042, 6655, 7265, 7977, 8686, 9502, 10314, 11248
Offset: 7

Views

Author

Alois P. Heinz, Nov 02 2012

Keywords

Programs

Formula

G.f.: Sum_{k>0} x^(2*k+5)/Product_{j=0..5} (1-x^(k+j)).
a(n) = A097364(n,5) = A116685(n,5) = A194621(n,5) - A194621(n,4) = A218507(n) - A218506(n).

A218569 Number of partitions p of n such that max(p)-min(p) = 6.

Original entry on oeis.org

1, 1, 3, 3, 7, 8, 14, 18, 27, 33, 49, 59, 81, 100, 131, 158, 205, 243, 306, 365, 448, 527, 642, 748, 896, 1042, 1231, 1418, 1667, 1906, 2215, 2527, 2909, 3298, 3781, 4260, 4847, 5446, 6158, 6886, 7756, 8633, 9669, 10738, 11970, 13239, 14713, 16212, 17943
Offset: 8

Views

Author

Alois P. Heinz, Nov 02 2012

Keywords

Programs

Formula

G.f.: Sum_{k>0} x^(2*k+6)/Product_{j=0..6} (1-x^(k+j)).
a(n) = A097364(n,6) = A116685(n,6) = A194621(n,6) - A194621(n,5) = A218508(n) - A218507(n).

A218570 Number of partitions p of n such that max(p)-min(p) = 7.

Original entry on oeis.org

1, 1, 3, 3, 7, 8, 14, 18, 28, 34, 51, 63, 86, 108, 144, 175, 229, 278, 351, 425, 529, 630, 775, 919, 1109, 1309, 1565, 1827, 2167, 2518, 2952, 3414, 3975, 4563, 5281, 6036, 6931, 7889, 9012, 10200, 11598, 13078, 14785, 16613, 18704, 20925, 23470, 26174, 29229
Offset: 9

Views

Author

Alois P. Heinz, Nov 02 2012

Keywords

Programs

  • Mathematica
    terms = 49; offset = 9; max = terms + offset; s[k0_ /; k0 > 0] := Sum[x^(2*k + k0)/Product[ (1 - x^(k + j)), {j, 0, k0}], {k, 1, Ceiling[max/2]}] + O[x]^max // CoefficientList[#, x] &; Drop[s[7], offset] (* Jean-François Alcover, Sep 11 2017, after Alois P. Heinz *)

Formula

G.f.: Sum_{k>0} x^(2*k+7)/Product_{j=0..7} (1-x^(k+j)).
a(n) = A097364(n,7) = A116685(n,7) = A194621(n,7) - A194621(n,6) = A218509(n) - A218508(n).

A218571 Number of partitions p of n such that max(p)-min(p) = 8.

Original entry on oeis.org

1, 1, 3, 3, 7, 8, 14, 18, 28, 35, 52, 65, 90, 113, 152, 188, 246, 302, 387, 471, 591, 714, 884, 1059, 1292, 1538, 1857, 2193, 2621, 3077, 3646, 4254, 4999, 5801, 6772, 7815, 9062, 10409, 12002, 13719, 15733, 17909, 20438, 23169, 26318, 29722, 33623, 37833
Offset: 10

Views

Author

Alois P. Heinz, Nov 02 2012

Keywords

Programs

  • Mathematica
    terms = 48; offset = 10; max = terms + offset; s[k0_ /; k0 > 0] := Sum[x^(2*k + k0)/Product[ (1 - x^(k + j)), {j, 0, k0}], {k, 1, Ceiling[max/2]}] + O[x]^max // CoefficientList[#, x] &; Drop[s[8], offset] (* Jean-François Alcover, Sep 11 2017, after Alois P. Heinz *)

Formula

G.f.: Sum_{k>0} x^(2*k+8)/Product_{j=0..8} (1-x^(k+j)).
a(n) = A097364(n,8) = A116685(n,8) = A194621(n,8) - A194621(n,7) = A218510(n) - A218509(n).

A218572 Number of partitions p of n such that max(p)-min(p) = 9.

Original entry on oeis.org

1, 1, 3, 3, 7, 8, 14, 18, 28, 35, 53, 66, 92, 117, 157, 196, 259, 319, 411, 507, 638, 777, 970, 1171, 1438, 1728, 2098, 2501, 3012, 3563, 4251, 5008, 5923, 6931, 8152, 9486, 11078, 12835, 14900, 17177, 19844, 22768, 26169, 29916, 34219, 38954, 44387, 50338
Offset: 11

Views

Author

Alois P. Heinz, Nov 02 2012

Keywords

Programs

  • Mathematica
    terms = 48; offset = 11; max = terms + offset; s[k0_ /; k0 > 0] := Sum[x^(2*k + k0)/Product[ (1 - x^(k + j)), {j, 0, k0}], {k, 1, Ceiling[max/2]}] + O[x]^max // CoefficientList[#, x] &; Drop[s[9], offset] (* Jean-François Alcover, Sep 11 2017, after Alois P. Heinz *)

Formula

G.f.: Sum_{k>0} x^(2*k+9)/Product_{j=0..9} (1-x^(k+j)).
a(n) = A097364(n,9) = A116685(n,9) = A194621(n,9) - A194621(n,8) = A218511(n) - A218510(n).
Previous Showing 11-16 of 16 results.