cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A336345 Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(2 * (exp(x) - Sum_{j=0..k} x^j/j!)).

Original entry on oeis.org

1, 1, 2, 1, 0, 6, 1, 0, 2, 22, 1, 0, 0, 2, 94, 1, 0, 0, 2, 14, 454, 1, 0, 0, 0, 2, 42, 2430, 1, 0, 0, 0, 2, 2, 222, 14214, 1, 0, 0, 0, 0, 2, 42, 1066, 89918, 1, 0, 0, 0, 0, 2, 2, 142, 6078, 610182, 1, 0, 0, 0, 0, 0, 2, 2, 366, 36490, 4412798, 1, 0, 0, 0, 0, 0, 2, 2, 142, 3082, 238046, 33827974
Offset: 0

Views

Author

Seiichi Manyama, Nov 20 2020

Keywords

Examples

			Square array begins:
     1,   1,  1, 1, 1, 1, 1, ...
     2,   0,  0, 0, 0, 0, 0, ...
     6,   2,  0, 0, 0, 0, 0, ...
    22,   2,  2, 0, 0, 0, 0, ...
    94,  14,  2, 2, 0, 0, 0, ...
   454,  42,  2, 2, 2, 0, 0, ...
  2430, 222, 42, 2, 2, 2, 0, ...
		

Crossrefs

Columns k=0..4 give A001861, A194689, A339014, A339017, A339027.
Main diagonal gives A000007.
Cf. A293024.

Programs

  • PARI
    {T(n, k) = n!*polcoef(prod(j=k+1, n, exp((x^j+x*O(x^n))/j!))^2, n)}
    
  • Ruby
    def ncr(n, r)
      return 1 if r == 0
      (n - r + 1..n).inject(:*) / (1..r).inject(:*)
    end
    def A(k, n)
      ary = [1]
      (1..n).each{|i| ary << 2 * (k..i - 1).inject(0){|s, j| s + ncr(i - 1, j) * ary[-1 - j]}}
      ary
    end
    def A336345(n)
      a = []
      (0..n).each{|i| a << A(i, n - i)}
      ary = []
      (0..n).each{|i|
        (0..i).each{|j|
          ary << a[i - j][j]
        }
      }
      ary
    end
    p A336345(20)

Formula

E.g.f. of column k: (Product_{j>k} exp(x^j/j!))^2.
T(0,k) = 1, T(1,k) = T(2,k) = ... = T(k,k) = 0 and T(n,k) = 2 * Sum_{j=k..n-1} binomial(n-1,j)*T(n-1-j,k) for n > k.

A355233 E.g.f. A(x) satisfies A'(x) = 1 + 2 * (exp(x) - 1) * A(x).

Original entry on oeis.org

0, 1, 0, 4, 6, 40, 150, 832, 4494, 27496, 178278, 1240720, 9159678, 71523448, 588049878, 5073746464, 45800173038, 431400176008, 4230061102662, 43087882883248, 455079854567646, 4975136823055768, 56212975652894646, 655496634896272960, 7878552380411524302
Offset: 0

Views

Author

Seiichi Manyama, Jun 25 2022

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 25; CoefficientList[Series[3*E^(-2 + 2*E^x - 2*x)/4 - 1/(E^(2*x)*4) - 1/(2*E^x), {x, 0, nmax}], x] * Range[0, nmax]! (* Vaclav Kotesovec, Jun 25 2022 *)
  • PARI
    a_vector(n) = my(v=vector(n)); v[1]=1; for(i=1, n-1, v[i+1]=2*sum(j=1, i-1, binomial(i, j)*v[j])); concat(0, v);

Formula

a(0) = 0, a(1) = 1; a(n+1) = 2 * Sum_{k=1..n-1} binomial(n,k) * a(k).
From Vaclav Kotesovec, Jun 26 2022: (Start)
E.g.f.: 3*exp(2*exp(x) - 2*x - 2)/4 - 1/(exp(2*x)*4) - 1/(2*exp(x)).
a(n) = 3*A194689(n)/4 - (-1)^n * (2^(n-2) + 1/2).
a(n) ~ 3 * n^(n-2) * exp(n/LambertW(n/2) - n - 2) / (sqrt(1 + LambertW(n/2)) * LambertW(n/2)^(n-2)). (End)

Extensions

Prepended a(0)=0 from Vaclav Kotesovec, Jun 25 2022

A337057 a(n) = exp(-n) * Sum_{k>=0} (k - n)^n * n^k / k!.

Original entry on oeis.org

1, 0, 2, 3, 52, 255, 4146, 38766, 688584, 9685017, 195875110, 3655101703, 84872077500, 1955205893680, 51896551499898, 1412668946049315, 42475968202854160, 1328074354724554471, 44778480417250291566, 1577210136570598631318
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 13 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n! SeriesCoefficient[Exp[n (Exp[x] - 1 - x)], {x, 0, n}], {n, 0, 19}]
    Unprotect[Power]; 0^0 = 1; Table[Sum[Binomial[n, k] (-n)^(n - k) BellB[k, n], {k, 0, n}], {n, 0, 19}]

Formula

a(n) = n! * [x^n] exp(n*(exp(x) - 1 - x)).
a(n) = Sum_{k=0..n} binomial(n,k) * (-n)^(n-k) * BellPolynomial_k(n).
Previous Showing 11-13 of 13 results.