cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 49 results. Next

A194897 Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194896; an interspersion.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 16, 23, 25, 26, 27, 28, 22, 24, 30, 32, 34, 35, 36, 29, 31, 33, 38, 40, 42, 44, 45, 37, 39, 41, 43, 47, 49, 51, 53, 55, 46, 48, 50, 52, 54, 57, 59, 61, 63, 65, 56, 58, 60, 62, 64, 66, 69, 71, 73
Offset: 1

Views

Author

Clark Kimberling, Sep 04 2011

Keywords

Comments

See A194832 for a general discussion.

Examples

			Northwest corner:
1...2...4...7...11..17..23
3...5...8...12..18..25..32
6...9...13..19..26..34..42
10..14..20..27..35..44..53
15..21..28..36..45..55..65
16..22..29..37..46..56..67
		

Crossrefs

Programs

  • Mathematica
    r = -Sqrt[8];
    t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
    f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 20}]] (* A194896 *)
    TableForm[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 15}]]
    row[n_] := Position[f, n];
    u = TableForm[Table[row[n], {n, 1, 20}]]
    g[n_, k_] := Part[row[n], k];
    p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
    {k, 1, n}]] (* A194897 *)
    q[n_] := Position[p, n]; Flatten[Table[q[n],
    {n, 1, 80}]] (* A194898 *)

A194899 Triangular array (and fractal sequence): row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {r}, {2r}, ..., {nr}, where r=sqrt(12).

Original entry on oeis.org

1, 1, 2, 3, 1, 2, 3, 1, 4, 2, 5, 3, 1, 4, 2, 5, 3, 1, 6, 4, 2, 7, 5, 3, 1, 6, 4, 2, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 8, 6, 4, 2, 9, 7, 5, 3, 1, 10, 8, 6, 4, 2, 11, 9, 7, 5, 3, 1, 10, 8, 6, 4, 2, 11, 9, 7, 5, 3, 1, 12, 10, 8, 6, 4, 2, 13, 11, 9, 7, 5, 3, 1, 12, 10, 8, 6, 4, 2
Offset: 1

Views

Author

Clark Kimberling, Sep 05 2011

Keywords

Comments

See A194832 for a general discussion.

Examples

			First nine rows:
1
1 2
3 1 2
3 1 4 2
5 3 1 4 2
5 3 1 6 4 2
7 5 3 1 6 4 2
7 5 3 1 8 6 4 2
9 7 5 3 1 8 6 4 2
		

Crossrefs

Programs

  • Mathematica
    r = Sqrt[12];
    t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
    f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 20}]] (* A194899 *)
    TableForm[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 15}]]
    row[n_] := Position[f, n];
    u = TableForm[Table[row[n], {n, 1, 20}]]
    g[n_, k_] := Part[row[n], k];
    p = Flatten[Table[g[k, n - k + 1], {n, 1, 15},
    {k, 1, n}]] (* A194900 *)
    q[n_] := Position[p, n]; Flatten[Table[q[n],
    {n, 1, 90}]] (* A194901 *)
  • PARI
    row(n) = Vec(vecsort(vector(n, k, frac(k*sqrt(12))),,1));
    tabl(nn) = for (n=1, nn, print(row(n))); \\ Michel Marcus, Feb 06 2019

A194900 Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194899; an interspersion.

Original entry on oeis.org

1, 2, 3, 5, 6, 4, 8, 10, 7, 9, 13, 15, 12, 14, 11, 18, 21, 17, 20, 16, 19, 25, 28, 24, 27, 23, 26, 22, 32, 36, 31, 35, 30, 34, 29, 33, 41, 45, 40, 44, 39, 43, 38, 42, 37, 50, 55, 49, 54, 48, 53, 47, 52, 46, 51, 61, 66, 60, 65, 59, 64, 58, 63, 57, 62, 56, 72, 78, 71
Offset: 1

Views

Author

Clark Kimberling, Sep 05 2011

Keywords

Comments

See A194832 for a general discussion.

Examples

			Northwest corner:
1...2...5...8...13..18
3...6...10..15..21..28
4...7...12..17..24..31
9...14..20..27..35..44
11..16..23..30..39..48
		

Crossrefs

Programs

  • Mathematica
    r = Sqrt[12];
    t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
    f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 20}]] (* A194899 *)
    TableForm[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 15}]]
    row[n_] := Position[f, n];
    u = TableForm[Table[row[n], {n, 1, 20}]]
    g[n_, k_] := Part[row[n], k];
    p = Flatten[Table[g[k, n - k + 1], {n, 1, 15},
    {k, 1, n}]] (* A194900 *)
    q[n_] := Position[p, n]; Flatten[Table[q[n],
    {n, 1, 90}]] (* A194901 *)

A194902 Triangular array (and fractal sequence): row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {r}, {2r}, ..., {nr}, where r=-sqrt(12).

Original entry on oeis.org

1, 2, 1, 2, 1, 3, 2, 4, 1, 3, 2, 4, 1, 3, 5, 2, 4, 6, 1, 3, 5, 2, 4, 6, 1, 3, 5, 7, 2, 4, 6, 8, 1, 3, 5, 7, 2, 4, 6, 8, 1, 3, 5, 7, 9, 2, 4, 6, 8, 10, 1, 3, 5, 7, 9, 2, 4, 6, 8, 10, 1, 3, 5, 7, 9, 11, 2, 4, 6, 8, 10, 12, 1, 3, 5, 7, 9, 11, 2, 4, 6, 8, 10, 12, 1, 3, 5, 7, 9, 11, 13, 2, 4, 6
Offset: 1

Views

Author

Clark Kimberling, Sep 05 2011

Keywords

Comments

See A194832 for a general discussion.

Examples

			First nine rows:
1
2 1
2 1 3
2 4 1 3
2 4 6 1 3 5
2 4 6 1 3 5 7
2 4 6 8 1 3 5 7
2 4 6 8 1 3 5 7 9
		

Crossrefs

Programs

  • Mathematica
    r = -Sqrt[12];
    t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
    f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 20}]] (* A194902 *)
    TableForm[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 15}]]
    row[n_] := Position[f, n];
    u = TableForm[Table[row[n], {n, 1, 20}]]
    g[n_, k_] := Part[row[n], k];
    p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
    {k, 1, n}]] (* A194903 *)
    q[n_] := Position[p, n]; Flatten[Table[q[n],
    {n, 1, 80}]]  (* A194904 *)

A194903 Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194902; an interspersion.

Original entry on oeis.org

1, 3, 2, 5, 4, 6, 9, 7, 10, 8, 13, 11, 14, 12, 15, 19, 16, 20, 17, 21, 18, 25, 22, 26, 23, 27, 24, 28, 33, 29, 34, 30, 35, 31, 36, 32, 41, 37, 42, 38, 43, 39, 44, 40, 45, 51, 46, 52, 47, 53, 48, 54, 49, 55, 50, 61, 56, 62, 57, 63, 58, 64, 59, 65, 60, 66, 73, 67, 74
Offset: 1

Views

Author

Clark Kimberling, Sep 05 2011

Keywords

Comments

See A194832 for a general discussion.

Examples

			Northwest corner:
1...3...5...9...13..19
2...4...7...11..16..22
6...10..14..20..26..34
8...12..17..23..30..38
15..21..27..35..43..53
		

Crossrefs

Programs

  • Mathematica
    r = -Sqrt[12];
    t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
    f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1,
        20}]] (* A194902 *)
    TableForm[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 15}]]
    row[n_] := Position[f, n];
    u = TableForm[Table[row[n], {n, 1, 20}]]
    g[n_, k_] := Part[row[n], k];
    p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
    {k, 1, n}]] (* A194903 *)
    q[n_] := Position[p, n]; Flatten[Table[q[n],
    {n, 1, 80}]]  (* A194904 *)

A194906 Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194905; an interspersion.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 29, 38, 40, 41, 42, 43, 44, 45, 37, 39, 47, 49, 51, 52, 53, 54, 55, 46, 48, 50, 57, 59, 61, 63, 64, 65, 66, 56, 58, 60, 62, 68, 70, 72
Offset: 1

Views

Author

Clark Kimberling, Sep 05 2011

Keywords

Comments

See A194832 for a general discussion.

Examples

			Northwest corner:
1...2...4...7...11..16..22
3...5...8...12..17..23..31
6...9...13..18..24..32..41
10..14..19..25..33..42..52
15..20..26..34..43..53..64
		

Crossrefs

Programs

  • Mathematica
    r = Pi;
    t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
    f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 20}]]  (* A194905 *)
    TableForm[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 15}]]
    row[n_] := Position[f, n];
    u = TableForm[Table[row[n], {n, 1, 20}]]
    g[n_, k_] := Part[row[n], k];
    p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
    {k, 1, n}]]  (* A194906 *)
    q[n_] := Position[p, n]; Flatten[Table[q[n],
    {n, 1, 80}]]  (* A194907 *)

A194908 Triangular array (and fractal sequence): row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {r}, {2r}, ..., {nr}, where r=-Pi.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 4, 3, 2, 1, 6, 5, 4, 3, 2, 1, 7, 6, 5, 4, 3, 2, 1, 7, 6, 5, 4, 3, 2, 1, 8, 7, 6, 5, 4, 3, 2, 9, 1, 8, 7, 6, 5, 4, 3, 10, 2, 9, 1, 8, 7, 6, 5, 4, 11, 3, 10, 2, 9, 1, 8, 7, 6, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 7, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 7, 14, 6
Offset: 1

Views

Author

Clark Kimberling, Sep 05 2011

Keywords

Comments

See A194832 for a general discussion.

Examples

			First nine rows:
  1;
  2, 1;
  3, 2, 1;
  4, 3, 2, 1;
  5, 4, 3, 2, 1;
  6, 5, 4, 3, 2, 1;
  7, 6, 5, 4, 3, 2, 1;
  7, 6, 5, 4, 3, 2, 1, 8;
  7, 6, 5, 4, 3, 2, 9, 1, 8;
		

Crossrefs

Programs

  • Mathematica
    r = -Pi;
    t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
    f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 20}]]  (* A194908 *)
    TableForm[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 15}]]
    row[n_] := Position[f, n];
    u = TableForm[Table[row[n], {n, 1, 20}]]
    g[n_, k_] := Part[row[n], k];
    p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
    {k, 1, n}]]  (* A194909 *)
    q[n_] := Position[p, n]; Flatten[Table[q[n],
    {n, 1, 80}]]  (* A194910 *)

A194909 Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194905; an interspersion.

Original entry on oeis.org

1, 3, 2, 6, 5, 4, 10, 9, 8, 7, 15, 14, 13, 12, 11, 21, 20, 19, 18, 17, 16, 28, 27, 26, 25, 24, 23, 22, 35, 34, 33, 32, 31, 30, 29, 36, 44, 42, 41, 40, 39, 38, 37, 45, 43, 54, 52, 50, 49, 48, 47, 46, 55, 53, 51, 65, 63, 61, 59, 58, 57, 56, 66, 64, 62, 60, 77, 75, 73
Offset: 1

Views

Author

Clark Kimberling, Sep 05 2011

Keywords

Comments

See A194832 for a general discussion.

Examples

			Northwest corner:
1...3...6...10..15..21
2...5...9...14..20..27
4...8...13..19..26..33
7...12..18..25..32..40
11..17..24..31..39..48
16..23..30..38..47..57
		

Crossrefs

Programs

  • Mathematica
    r = -Pi;
    t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
    f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 20}]]  (* A194908 *)
    TableForm[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 15}]]
    row[n_] := Position[f, n];
    u = TableForm[Table[row[n], {n, 1, 20}]]
    g[n_, k_] := Part[row[n], k];
    p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
    {k, 1, n}]]  (* A194909 *)
    q[n_] := Position[p, n]; Flatten[Table[q[n],
    {n, 1, 80}]]  (* A194910 *)

A194911 Triangular array (and fractal sequence): row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {r}, {2r}, ..., {nr}, where r=2^(1/3).

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 1, 5, 2, 3, 4, 1, 5, 2, 6, 3, 4, 1, 5, 2, 6, 3, 7, 4, 8, 1, 5, 2, 6, 3, 7, 4, 8, 1, 5, 9, 2, 6, 3, 7, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12, 1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 3, 7, 11, 4, 8, 12
Offset: 1

Views

Author

Clark Kimberling, Sep 05 2011

Keywords

Comments

See A194832 for a general discussion. The triangle is not equal to A194841.

Examples

			First nine rows:
1
1 2
1 2 3
4 1 2 3
4 1 5 2 3
4 1 5 2 6 3
4 1 5 2 6 3 7
4 8 1 5 2 6 3 7
4 8 1 5 9 2 6 3 7
		

Crossrefs

Programs

  • Mathematica
    r = 2^(1/3);
    t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
    f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 20}]]  (* A194911 *)
    TableForm[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 15}]]
    row[n_] := Position[f, n];
    u = TableForm[Table[row[n], {n, 1, 20}]]
    g[n_, k_] := Part[row[n], k];
    p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
    {k, 1, n}]]  (* A194912 *)
    q[n_] := Position[p, n]; Flatten[Table[q[n],
    {n, 1, 80}]]  (* A194913 *)

A194912 Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194905; an interspersion.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 7, 12, 14, 15, 11, 13, 17, 19, 21, 16, 18, 20, 23, 25, 27, 22, 24, 26, 28, 31, 33, 35, 29, 32, 34, 36, 30, 39, 42, 44, 37, 40, 43, 45, 38, 41, 48, 51, 54, 46, 49, 52, 55, 47, 50, 53, 58, 61, 64, 56, 59, 62, 65, 57, 60, 63, 66, 70, 73, 76
Offset: 1

Views

Author

Clark Kimberling, Sep 05 2011

Keywords

Comments

See A194832 for a general discussion. A194912 is not equal to A194842.

Examples

			Northwest corner:
1...2...4...8...12..17
3...5...9...14..19..25
6...10..15..21..27..35
7...11..16..22..29..37
13..18..24..32..40..49
		

Crossrefs

Programs

  • Mathematica
    r = 2^(1/3);
    t[n_] := Table[FractionalPart[k*r], {k, 1, n}];
    f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 20}]]  (* A194911 *)
    TableForm[Table[Flatten[(Position[t[n], #1] &) /@
    Sort[t[n], Less]], {n, 1, 15}]]
    row[n_] := Position[f, n];
    u = TableForm[Table[row[n], {n, 1, 20}]]
    g[n_, k_] := Part[row[n], k];
    p = Flatten[Table[g[k, n - k + 1], {n, 1, 13},
    {k, 1, n}]]  (* A194912 *)
    q[n_] := Position[p, n]; Flatten[Table[q[n],
    {n, 1, 80}]]  (* A194913 *)
Previous Showing 31-40 of 49 results. Next