cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A350761 Decimal expansion of Pi^2*log(2)/6 - log(2)^3/3 - 3*zeta(3)/4.

Original entry on oeis.org

1, 2, 7, 6, 3, 0, 5, 1, 5, 9, 4, 3, 5, 1, 3, 8, 8, 3, 5, 1, 8, 4, 9, 1, 7, 1, 0, 3, 2, 1, 5, 1, 8, 3, 3, 7, 4, 2, 4, 1, 8, 1, 2, 9, 3, 6, 5, 9, 7, 4, 2, 5, 4, 0, 4, 1, 2, 7, 4, 7, 6, 9, 3, 9, 0, 5, 1, 9, 0, 0, 4, 3, 9, 4, 6, 0, 3, 6, 2, 9, 5, 5, 2, 5, 6, 3, 1, 1, 5, 3, 6, 5, 8, 4, 5, 5, 9, 1, 8, 0, 4, 9, 9, 0, 5
Offset: 0

Views

Author

Amiram Eldar, Jan 14 2022

Keywords

Examples

			0.12763051594351388351849171032151833742418129365974...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^2*Log[2]/6 - Log[2]^3/3 - 3*Zeta[3]/4, 10, 100][[1]]

Formula

Equals Sum_{n>=1} ((1/n) * (Sum_{k>=1} (-1)^(k+1)/(n+k))^2).

A354857 Decimal expansion of Sum_{k,m>=1} (-1)^(k+m+1)/floor(sqrt(k+m))^3.

Original entry on oeis.org

6, 1, 4, 0, 7, 1, 5, 3, 6, 6, 1, 4, 3, 6, 2, 8, 1, 3, 6, 0, 3, 6, 3, 6, 0, 8, 3, 6, 4, 7, 6, 0, 1, 6, 6, 9, 6, 1, 1, 2, 3, 5, 3, 6, 5, 7, 0, 8, 2, 8, 0, 3, 1, 1, 6, 4, 4, 2, 5, 5, 4, 5, 7, 6, 7, 2, 0, 1, 8, 7, 0, 2, 8, 3, 1, 5, 6, 0, 3, 3, 4, 8, 8, 2, 8, 3, 5, 8, 7, 2, 0, 9, 9, 2, 9, 6, 5, 9, 6, 5, 8, 4, 3, 5, 4
Offset: 0

Views

Author

Amiram Eldar, Jun 09 2022

Keywords

Examples

			0.61407153661436281360363608364760166961123536570828...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi^2/12 + Log[2] - 3*Zeta[3]/4, 10, 100][[1]]

Formula

Equals Pi^2/12 + log(2) - 3*zeta(3)/4.

A373513 Decimal expansion of 3*zeta(3)/2.

Original entry on oeis.org

1, 8, 0, 3, 0, 8, 5, 3, 5, 4, 7, 3, 9, 3, 9, 1, 4, 2, 8, 0, 9, 9, 6, 0, 7, 2, 4, 2, 2, 6, 7, 1, 7, 4, 9, 8, 6, 1, 4, 7, 4, 7, 9, 4, 3, 8, 5, 1, 0, 7, 4, 8, 3, 2, 2, 6, 8, 8, 4, 0, 7, 3, 3, 3, 0, 1, 2, 7, 5, 7, 3, 0, 8, 6, 7, 9, 4, 6, 9, 6, 3, 5, 2, 7, 9, 6, 8, 3, 8, 1, 0
Offset: 1

Views

Author

R. J. Mathar, Jun 07 2024

Keywords

Examples

			1.80308535473939142809960724226717498614747943851...
		

Crossrefs

Programs

  • Maple
    3*Zeta(3)/2 ; evalf(%) ;
  • Mathematica
    RealDigits[3*Zeta[3]/2, 10, 120][[1]] (* Amiram Eldar, Jun 10 2024 *)
  • PARI
    3*zeta(3)/2 \\ Michel Marcus, Jun 10 2024

Formula

Equals Integral_{x=0..1} log^2(x)/(x+1) dx = -2*Integral_{x=0..1} log(x)*log(1+x)/x dx.
Equals 3*A002117/2 = 2*A197070.
Equals A258750/Pi. - Hugo Pfoertner, Jun 10 2024
Equals Integral_{x=0..1} arctanh^3(x)/x^2 [Li]. - R. J. Mathar, Jun 11 2024
Previous Showing 21-23 of 23 results.