cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-33 of 33 results.

A241240 Primes obtained by merging 4 successive digits in decimal expansion of sqrt(3).

Original entry on oeis.org

3527, 4463, 587, 5381, 8069, 4519, 1933, 3301, 3, 37, 811, 1867, 6703, 9437, 4373, 8093, 9323, 101, 8467, 1531, 6689, 3797, 367, 9049, 499, 9859, 9467, 347, 1009, 947, 1871, 8719, 8329, 3299, 7789, 2887, 4463, 8329, 2917, 9173, 6679, 8353, 6661, 8431, 8089, 9437
Offset: 1

Views

Author

K. D. Bajpai, Apr 17 2014

Keywords

Comments

Some terms in the sequence are less than 4 digits because leading zeros are permitted.

Examples

			a(1) = 3527 which is prime. It is the first occurrence of 4 successive digit prime in decimal expansion of sqrt(3), i.e., 1.73205080756887729(3527)44634151...
		

Crossrefs

Programs

  • Mathematica
    t=Sqrt[3];With[{k=FromDigits/@Partition[RealDigits[t,10,25000][[1]],4,1]},Select[k,PrimeQ]]

A241244 Primes obtained by merging 4 successive digits in decimal expansion of sqrt(5).

Original entry on oeis.org

6067, 7499, 8969, 4091, 9173, 8731, 5209, 9941, 2749, 4969, 5081, 5077, 773, 4253, 2677, 4447, 3863, 2153, 7817, 3191, 9187, 1879, 6581, 8053, 1753, 5003, 2339, 9241, 3253, 2539, 2887, 6299, 8161, 7759, 2371, 3907, 7297, 8641, 2689, 4099, 991, 3169, 1693, 7019
Offset: 1

Views

Author

K. D. Bajpai, Apr 18 2014

Keywords

Comments

Some terms in the sequence have fewer than 4 digits because leading zeros are permitted.

Examples

			a(1) = 6067 which is prime. It is the first occurrence of 4 successive digit prime in decimal expansion of sqrt(5), i.e., 2.23(6067)9774997896964091736687312762354...
		

Crossrefs

Programs

  • Mathematica
    t=Sqrt[5];With[{k=FromDigits/@Partition[RealDigits[t,10,25000][[1]],4,1]},Select[k,PrimeQ]]

A241245 Primes obtained by merging 4 successive digits in decimal expansion of sqrt (5).

Original entry on oeis.org

6067, 7499, 8969, 4091, 9173, 8731, 5209, 9941, 2749, 4969, 5081, 5077, 4253, 2677, 4447, 3863, 2153, 7817, 3191, 9187, 1879, 6581, 8053, 1753, 5003, 2339, 9241, 3253, 2539, 2887, 6299, 8161, 7759, 2371, 3907, 7297, 8641, 2689, 4099, 3169, 1693, 7019, 7541, 5413
Offset: 1

Views

Author

K. D. Bajpai, Apr 18 2014

Keywords

Comments

All the terms in the sequence are 4-digit primes because leading zeros are not permitted.

Crossrefs

Programs

  • Mathematica
    With[{s5=FromDigits/@Partition[RealDigits[Sqrt[5],10,500][[1]],4,1]}, Select[ s5,IntegerLength[#]==4&&PrimeQ[#]&]] (* Harvey P. Dale, Mar 25 2018 *)

Extensions

Mathematica program corrected by Harvey P. Dale, Mar 25 2018
Previous Showing 31-33 of 33 results.