A200725
G.f. A(x) satisfies A(x) = (1+x^2)*(1 + x*A(x)^3).
Original entry on oeis.org
1, 1, 4, 16, 76, 399, 2206, 12664, 74790, 451420, 2772313, 17267652, 108821293, 692609446, 4445642625, 28744599748, 187047449289, 1224027357216, 8050074481917, 53179900898596, 352726704965748, 2348036826102013, 15682048658695168, 105052549830928908, 705678173069959645
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 16*x^3 + 76*x^4 + 399*x^5 + 2206*x^6 +...
Related expansion:
A(x)^3 = 1 + 3*x + 15*x^2 + 73*x^3 + 384*x^4 + 2133*x^5 + 12280*x^6 +...
where a(3) = 1 + 15; a(4) = 3 + 73; a(5) = 15 + 384; a(6) = 73 + 2133; ...
The logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (1 + x/A^3)*x*A^2 + (1 + 2^2*x/A^3 + x^2/A^6)*x^2*A^4/2 +
(1 + 3^2*x/A^3 + 3^2*x^2/A^6 + x^3/A^9)*x^3*A^6/3 +
(1 + 4^2*x/A^3 + 6^2*x^2/A^6 + 4^2*x^3/A^9 + x^4/A^12)*x^4*A^8/4 +
(1 + 5^2*x/A^3 + 10^2*x^2/A^6 + 10^2*x^3/A^9 + 5^2*x^4/A^12 + x^5/A^15)*x^5*A^10/5 + ...
which involves the squares of the binomial coefficients C(n,k).
Cf.
A200716,
A200717,
A200718,
A200719,
A200074,
A200075,
A199874,
A199876,
A199877,
A198951,
A198953,
A198957,
A192415,
A198888,
A036765.
-
nmax=20;aa=ConstantArray[0,nmax]; aa[[1]]=1;Do[AGF=1+Sum[aa[[n]]*x^n,{n,1,j-1}]+koef*x^j; sol=Solve[Coefficient[(1+x^2)*(1+x*AGF^3)-AGF,x,j]==0,koef][[1]];aa[[j]]=koef/.sol[[1]],{j,2,nmax}];Flatten[{1,aa}] (* Vaclav Kotesovec, Aug 19 2013 *)
-
{a(n)=local(p=2,q=-3,A=1+x);for(i=1,n,A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n));polcoeff(A,n)}
-
{a(n)=local(p=2,q=-3,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0,m,binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
-
{a(n)=local(p=2,q=-3,A=1+x);for(i=1,n,A=exp(sum(m=1,n,x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
A369600
Expansion of (1/x) * Series_Reversion( x * (1/(1+x)^3 - x^3) ).
Original entry on oeis.org
1, 3, 12, 56, 291, 1638, 9780, 60948, 391821, 2577575, 17256918, 117150228, 804343302, 5575177026, 38957753136, 274143594685, 1941037464402, 13818185220783, 98848503602394, 710185896393792, 5122358166219855, 37076879861508830, 269235792063692580
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1/(1+x)^3-x^3))/x)
-
a(n) = sum(k=0, n\3, binomial(n+k, k)*binomial(3*n+3*k+3, n-3*k))/(n+1);
A211248
G.f. satisfies: A(x) = (1 + x*A(x)^3) * (1 + x^2*A(x)^4).
Original entry on oeis.org
1, 1, 4, 20, 114, 703, 4565, 30752, 212921, 1505916, 10833164, 79018804, 583062388, 4344431508, 32641910199, 247033970128, 1881402836376, 14408753414558, 110897147057354, 857307054338476, 6653979156676983, 51831065993122915, 405060413133136902, 3175019470333290488
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 20*x^3 + 114*x^4 + 703*x^5 + 4565*x^6 +...
where A( x*(1-x-x^3)^2/(1+x^2)^2 ) = (1+x^2)/(1-x-x^3).
Related expansions:
A(x)^3 = 1 + 3*x + 15*x^2 + 85*x^3 + 522*x^4 + 3381*x^5 + 22735*x^6 +...
A(x)^4 = 1 + 4*x + 22*x^2 + 132*x^3 + 841*x^4 + 5588*x^5 + 38288*x^6 +...
A(x)^7 = 1 + 7*x + 49*x^2 + 343*x^3 + 2429*x^4 + 17430*x^5 +...
where A(x) = 1 + x*A(x)^3 + x^2*A(x)^4 + x^3*A(x)^7.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x*A(x))*x*A(x)^2 + (1 + 2^2*x*A(x) + x^2*A(x)^2)*x^2*A(x)^4/2 +
(1 + 3^2*x*A(x) + 3^2*x^2*A(x)^2 + x^3*A(x)^3)*x^3*A(x)^6/3 +
(1 + 4^2*x*A(x) + 6^2*x^2*A(x)^2 + 4^2*x^3*A(x)^3 + x^4*A(x)^4)*x^4*A(x)^8/4 +
(1 + 5^2*x*A(x) + 10^2*x^2*A(x)^2 + 10^2*x^3*A(x)^3 + 5^2*x^4*A(x)^4 + x^5*A(x)^5)*x^5*A(x)^10/5 +
(1 + 6^2*x*A(x) + 15^2*x^2*A(x)^2 + 20^2*x^3*A(x)^3 + 15^2*x^4*A(x)^4 + 6^2*x^5*A(x)^5 + x^6*A(x)^6)*x^6*A(x)^12/6 +...
more explicitly,
log(A(x)) = x + 7*x^2/2 + 49*x^3/3 + 359*x^4/4 + 2706*x^5/5 + 20767*x^6/6 +...
-
CoefficientList[Sqrt[1/x * InverseSeries[Series[x*(1 - x - x^3)^2/(1 + x^2)^2, {x, 0, 20}], x]], x] (* Vaclav Kotesovec, Nov 22 2017 *)
-
{a(n)=polcoeff(sqrt( (1/x)*serreverse( x*(1-x-x^3)^2/(1+x^2+x*O(x^n))^2 ) ), n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=local(p=2, q=1, A=1+x); for(i=1, n, A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n)); polcoeff(A, n)}
-
{a(n)=local(p=2, q=1, A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0, m, binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
-
{a(n)=local(p=2, q=1, A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
A211249
G.f. satisfies: A(x) = (1 + x*A(x)^3) * (1 + x^2*A(x)^5).
Original entry on oeis.org
1, 1, 4, 21, 126, 819, 5611, 39900, 291719, 2179181, 16560175, 127617168, 994951887, 7833555324, 62196300997, 497425570173, 4003607595960, 32404662671330, 263586896132154, 2153631763231319, 17666722629907960, 145449082369322208, 1201414340736684702
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 21*x^3 + 126*x^4 + 819*x^5 + 5611*x^6 +...
where A( x*(1-x-x^3)^2/(1+x^2)^2 ) = (1+x^2)/(1-x-x^3).
Related expansions:
A(x)^3 = 1 + 3*x + 15*x^2 + 88*x^3 + 564*x^4 + 3828*x^5 + 27040*x^6 +...
A(x)^5 = 1 + 5*x + 30*x^2 + 195*x^3 + 1335*x^4 + 9486*x^5 + 69305*x^6 +...
A(x)^8 = 1 + 8*x + 60*x^2 + 448*x^3 + 3374*x^4 + 25704*x^5 +...
where A(x) = 1 + x*A(x)^3 + x^2*A(x)^5 + x^3*A(x)^8.
The logarithm of the g.f. equals the series:
log(A(x)) = (1 + x*A(x)^2)*x*A(x)^2 +
(1 + 2^2*x*A(x)^2 + x^2*A(x)^4)*x^2*A(x)^4/2 +
(1 + 3^2*x*A(x)^2 + 3^2*x^2*A(x)^4 + x^3*A(x)^6)*x^3*A(x)^6/3 +
(1 + 4^2*x*A(x)^2 + 6^2*x^2*A(x)^4 + 4^2*x^3*A(x)^6 + x^4*A(x)^8)*x^4*A(x)^8/4 +
(1 + 5^2*x*A(x)^2 + 10^2*x^2*A(x)^4 + 10^2*x^3*A(x)^6 + 5^2*x^4*A(x)^8 + x^5*A(x)^10)*x^5*A(x)^10/5 +
(1 + 6^2*x*A(x)^2 + 15^2*x^2*A(x)^4 + 20^2*x^3*A(x)^6 + 15^2*x^4*A(x)^8 + 6^2*x^5*A(x)^10 + x^6*A(x)^12)*x^6*A(x)^12/6 +...
more explicitly,
log(A(x)) = x + 7*x^2/2 + 52*x^3/3 + 403*x^4/4 + 3211*x^5/5 + 26050*x^6/6 +...
-
CoefficientList[Sqrt[1/x * InverseSeries[Series[x*(1-2*x-x^2+x^4 + (1-x-x^2) * Sqrt[(1+x+x^2)*(1-3*x+x^2)])/2, {x, 0, 20}], x]], x] (* Vaclav Kotesovec, Nov 22 2017 *)
-
{a(n)=polcoeff(sqrt( (1/x)*serreverse( x*(1-2*x-x^2+x^4 + (1-x-x^2)*sqrt( (1+x+x^2)*(1-3*x+x^2) +x*O(x^n)))/2 ) ), n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=local(p=2, q=2, A=1+x); for(i=1, n, A=(1+x*A^(p+1))*(1+x^2*A^(p+q+1))+x*O(x^n)); polcoeff(A, n)}
-
{a(n)=local(p=2, q=2, A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*(A+x*O(x^n))^(p*m)/m*sum(j=0, m, binomial(m, j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
-
{a(n)=local(p=2, q=2, A=1+x); for(i=1, n, A=exp(sum(m=1, n, x^m*(A+x*O(x^n))^(p*m)/m*(1-x*A^q)^(2*m+1)*sum(j=0, n, binomial(m+j,j)^2*x^j*(A+x*O(x^n))^(q*j))))); polcoeff(A, n, x)}
A369599
Expansion of (1/x) * Series_Reversion( x * (1/(1+x)^2 - x^3) ).
Original entry on oeis.org
1, 2, 5, 15, 54, 223, 993, 4580, 21521, 102563, 495318, 2422302, 11979965, 59824535, 301202673, 1527118720, 7789673832, 39947163395, 205835776301, 1065155017623, 5533253267649, 28844759080896, 150846487065730, 791163319140664, 4160593763997122
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serreverse(x*(1/(1+x)^2-x^3))/x)
-
a(n) = sum(k=0, n\3, binomial(n+k, k)*binomial(2*n+2*k+2, n-3*k))/(n+1);
A379082
Expansion of (1/x) * Series_Reversion( x * (1/(1 + x) - x^3)^2 ).
Original entry on oeis.org
1, 2, 5, 16, 64, 288, 1354, 6496, 31728, 157818, 798098, 4091712, 21211165, 110969430, 585116287, 3106334810, 16590881379, 89085610328, 480627775528, 2604103448334, 14163573236255, 77302955664902, 423245859576867, 2324046398587426, 12795255089638583, 70617777139027756
Offset: 0
-
a(n) = 2*sum(k=0, n\3, binomial(2*n+k+2, k)*binomial(2*n+k+2, n-3*k)/(2*n+k+2));
A379083
Expansion of (1/x) * Series_Reversion( x * (1/(1 + x) - x^3)^3 ).
Original entry on oeis.org
1, 3, 12, 58, 321, 1941, 12405, 82188, 558567, 3870694, 27245268, 194269872, 1400352702, 10187886330, 74710928103, 551676261727, 4098401671788, 30610414484517, 229717037309281, 1731295701244008, 13098454442320593, 99444838611953627, 757393732018935552, 5785220154325055826
Offset: 0
-
a(n) = 3*sum(k=0, n\3, binomial(3*n+k+3, k)*binomial(3*n+k+3, n-3*k)/(3*n+k+3));
A199247
G.f. satisfies: A(x) = (1 + x*A(x))*(1 + x^2*A(x)^3 + x^3*A(x)^4).
Original entry on oeis.org
1, 1, 2, 7, 25, 92, 359, 1453, 6018, 25411, 109032, 473942, 2082550, 9235675, 41284297, 185819487, 841433773, 3830604764, 17521832924, 80490034307, 371169646860, 1717567062240, 7973153760616, 37119622029816, 173272771061677, 810810134833720, 3802675087749650
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 25*x^4 + 92*x^5 + 359*x^6 + 1453*x^7 +...
Related expansions:
A(x)^3 = 1 + 3*x + 9*x^2 + 34*x^3 + 135*x^4 + 543*x^5 + 2243*x^6 +...
A(x)^4 = 1 + 4*x + 14*x^2 + 56*x^3 + 233*x^4 + 976*x^5 + 4154*x^6 +...
A(x)^5 = 1 + 5*x + 20*x^2 + 85*x^3 + 370*x^4 + 1611*x^5 + 7065*x^6 +...
where A(x) = 1 + x*A(x) + x^2*A(x)^3 + 2*x^3*A(x)^4 + x^4*A(x)^5.
-
Table[Sum[Binomial[n+k, k]*Binomial[n+2*k+1, n-2*k]/(n+1), {k,0,Floor[n/2]}], {n,0,30}] (* Vaclav Kotesovec, Nov 18 2017 *)
-
{a(n)=sum(k=0, n\2, binomial(n+k, k)*binomial(n+2*k+1, n-2*k))/(n+1)}
-
{a(n)=local(A=1+x); A=1/x*serreverse(x/(1+x+x*O(x^n)) - x^3 - x^4); polcoeff(A, n)}
-
{a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A)*(1 + x^2*A^3 + x^3*A^4)+x*O(x^n)); polcoeff(A, n)}
Comments