cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-32 of 32 results.

A386035 Primes having only {0, 1, 6, 7} as digits.

Original entry on oeis.org

7, 11, 17, 61, 67, 71, 101, 107, 167, 601, 607, 617, 661, 677, 701, 761, 1061, 1117, 1171, 1601, 1607, 1667, 1777, 6007, 6011, 6067, 6101, 6607, 6661, 6701, 6761, 7001, 7177, 7607, 7717, 10007, 10061, 10067, 10111, 10177, 10601, 10607, 10667, 10711, 10771, 11071
Offset: 1

Views

Author

Jason Bard, Jul 14 2025

Keywords

Comments

Primes with decimal digits only in the set {0,1} mod 6.

Crossrefs

Supersequence of A199325, A199326, A260891.

Programs

  • Magma
    [p: p in PrimesUpTo(10^6) | Set(Intseq(p)) subset [0, 1, 6, 7]];
    
  • Mathematica
    Select[FromDigits /@ Tuples[{0, 1, 6, 7}, n], PrimeQ]
  • PARI
    primes_with(, 1, [0, 1, 6, 7]) \\ uses function in A385776
  • Python
    print(list(islice(primes_with("0167"), 41))) # uses function/imports in A385776
    

A199305 Palindromic primes in the sense of A007500 with digits '0', '1' and '5' only.

Original entry on oeis.org

5, 11, 101, 151, 1151, 1511, 10151, 10501, 11551, 15101, 15511, 15551, 100511, 110051, 115001, 150011, 150151, 151051, 1001551, 1051051, 1055501, 1115551, 1150151, 1150511, 1501501, 1510511, 1550551, 1551001, 1551551, 1555111, 10000511, 10011101, 10011511, 10055011, 10101551
Offset: 1

Views

Author

M. F. Hasler, Nov 06 2011

Keywords

Comments

All terms, except for the initial 5, start and end with the digit '1'. This fact could be used to significantly speed up the given program.

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(10^8) | Set(Intseq(p)) subset [0,1,5] and IsPrime(Seqint(Reverse(Intseq(p))))]; // Bruno Berselli, Nov 07 2011
  • PARI
    a(n=50, list=0, L=[0, 1, 5], needpal=1)={ for(d=1, 1e9, u=vector(d, i, 10^(d-i))~; forvec(v=vector(d, i, [1+(i==1&!L[1]), #L]), isprime(t=vector(d, i, L[v[i]])*u) || next; needpal & !isprime(A004086(t)) & next; list & print1(t", "); n-- || return(t)))}  \\ M. F. Hasler, Nov 06 2011
    
Previous Showing 31-32 of 32 results.