cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 136 results. Next

A199956 Decimal expansion of greatest x satisfying x^2 + 2*cos(x) = 3*sin(x).

Original entry on oeis.org

1, 8, 5, 4, 7, 7, 8, 4, 1, 0, 3, 5, 6, 7, 5, 1, 7, 7, 4, 1, 4, 1, 9, 3, 9, 5, 8, 1, 7, 3, 6, 9, 9, 8, 7, 6, 1, 2, 0, 4, 0, 2, 7, 3, 4, 6, 6, 2, 5, 0, 8, 3, 5, 1, 5, 6, 1, 8, 5, 4, 3, 4, 9, 8, 5, 1, 4, 3, 3, 5, 0, 3, 4, 7, 8, 0, 5, 7, 7, 0, 2, 7, 3, 9, 6, 7, 0, 0, 4, 1, 6, 7, 4, 8, 0, 9, 8, 5, 4
Offset: 1

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  0.74080336819413223759642692454702162091742...
greatest x: 1.854778410356751774141939581736998761204...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = 2; c = 3;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .74, .75}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199955 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.8, 1.9}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199956 *)
  • PARI
    a=1; b=2; c=3; solve(x=.5, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018

A199957 Decimal expansion of least x satisfying x^2 + 2*cos(x) = 4*sin(x).

Original entry on oeis.org

5, 2, 5, 4, 1, 6, 2, 7, 9, 2, 8, 2, 3, 5, 3, 6, 4, 9, 0, 7, 1, 5, 2, 2, 0, 5, 3, 3, 9, 2, 6, 8, 9, 6, 5, 6, 7, 3, 8, 8, 5, 6, 5, 3, 0, 2, 0, 7, 8, 3, 2, 8, 4, 4, 6, 3, 6, 0, 9, 8, 3, 8, 0, 6, 7, 2, 5, 4, 7, 6, 7, 6, 6, 0, 7, 4, 2, 3, 4, 8, 8, 5, 3, 7, 0, 6, 4, 8, 5, 2, 4, 7, 7, 1, 1, 8, 8, 6, 8
Offset: 0

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  0.525416279282353649071522053392...
greatest x: 2.1115948673130941666464133109...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = 2; c = 4;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .52, .53}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199957 *)
    r = x /. FindRoot[f[x] == g[x], {x, 2.1, 2.2}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199958 *)
  • PARI
    a=1; b=2; c=4; solve(x=.5, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018

A199958 Decimal expansion of greatest x satisfying x^2 + 2*cos(x) = 4*sin(x).

Original entry on oeis.org

2, 1, 1, 1, 5, 9, 4, 8, 6, 7, 3, 1, 3, 0, 9, 4, 1, 6, 6, 6, 4, 6, 4, 1, 3, 3, 1, 0, 9, 9, 2, 0, 7, 4, 5, 4, 6, 0, 6, 7, 6, 8, 3, 5, 7, 6, 1, 4, 3, 6, 4, 6, 4, 5, 3, 4, 0, 0, 6, 1, 8, 8, 8, 3, 7, 3, 2, 8, 4, 5, 1, 2, 2, 9, 1, 7, 9, 0, 0, 3, 6, 6, 6, 5, 8, 1, 5, 8, 8, 3, 6, 6, 7, 2, 6, 2, 4, 9, 1
Offset: 1

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  0.525416279282353649071522053392...
greatest x: 2.1115948673130941666464133109...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = 2; c = 4;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .52, .53}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199957 *)
    r = x /. FindRoot[f[x] == g[x], {x, 2.1, 2.2}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199958 *)
  • PARI
    a=1; b=2; c=4; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018

A199959 Decimal expansion of least x satisfying x^2 + 3*cos(x) = 3*sin(x).

Original entry on oeis.org

1, 0, 4, 6, 4, 7, 2, 5, 4, 2, 5, 4, 0, 0, 9, 3, 4, 0, 3, 6, 1, 8, 0, 7, 3, 5, 5, 3, 7, 8, 6, 4, 3, 7, 0, 9, 3, 4, 0, 0, 2, 5, 5, 1, 4, 3, 3, 5, 3, 1, 8, 0, 5, 3, 7, 0, 1, 6, 8, 6, 3, 4, 0, 1, 8, 9, 4, 1, 2, 2, 9, 6, 3, 9, 8, 0, 8, 4, 0, 8, 9, 4, 2, 8, 1, 2, 0, 4, 0, 6, 9, 5, 1, 7, 7, 0, 1, 9, 2
Offset: 1

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  1.046472542540093403618073553786437093400...
greatest x: 1.9905034616684938355818760222044124763...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = 3; c = 3;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199959 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.99, 2.0}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199960 *)
  • PARI
    a=1; b=3; c=3; solve(x=1, 1.5, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018

A199960 Decimal expansion of greatest x satisfying x^2+3*cos(x)=3*sin(x).

Original entry on oeis.org

1, 9, 9, 0, 5, 0, 3, 4, 6, 1, 6, 6, 8, 4, 9, 3, 8, 3, 5, 5, 8, 1, 8, 7, 6, 0, 2, 2, 2, 0, 4, 4, 1, 2, 4, 7, 6, 3, 6, 9, 4, 5, 1, 1, 6, 7, 7, 1, 8, 2, 5, 3, 6, 2, 0, 8, 9, 8, 8, 7, 5, 4, 8, 8, 9, 7, 0, 7, 6, 6, 2, 2, 9, 2, 7, 5, 9, 1, 9, 6, 3, 0, 3, 2, 0, 2, 8, 2, 0, 8, 9, 2, 5, 5, 7, 4, 8, 1, 0
Offset: 1

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  1.046472542540093403618073553786437093400...
greatest x: 1.9905034616684938355818760222044124763...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = 3; c = 3;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199959 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.99, 2.0}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199960 *)
  • PARI
    a=1; b=3; c=3; solve(x=1.9, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018

A199961 Decimal expansion of least x satisfying x^2 + 3*cos(x) = 4*sin(x).

Original entry on oeis.org

7, 5, 8, 9, 6, 2, 2, 0, 3, 5, 1, 7, 6, 9, 6, 8, 5, 1, 8, 5, 7, 1, 9, 8, 2, 8, 6, 0, 5, 6, 1, 0, 5, 0, 9, 2, 5, 9, 4, 9, 0, 2, 6, 0, 7, 0, 3, 6, 4, 4, 6, 6, 1, 4, 5, 8, 2, 5, 7, 3, 8, 3, 9, 2, 8, 9, 8, 3, 0, 8, 4, 2, 6, 2, 3, 5, 4, 9, 1, 4, 6, 4, 9, 2, 4, 6, 1, 2, 2, 8, 2, 3, 9, 2, 9, 2, 2, 4, 6
Offset: 0

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  0.7589622035176968518571982860561050925949...
greatest x: 2.23580928206456912111526414831701984424...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = 3; c = 4;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .75, .76}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199961 *)
    r = x /. FindRoot[f[x] == g[x], {x, 2.2, 2.3}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199962 *)
  • PARI
    a=1; b= 3; c=4; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 23 2018

A199962 Decimal expansion of greatest x satisfying x^2 + 3*cos(x) = 4*sin(x).

Original entry on oeis.org

2, 2, 3, 5, 8, 0, 9, 2, 8, 2, 0, 6, 4, 5, 6, 9, 1, 2, 1, 1, 1, 5, 2, 6, 4, 1, 4, 8, 3, 1, 7, 0, 1, 9, 8, 4, 4, 2, 4, 8, 0, 4, 9, 2, 0, 3, 9, 2, 6, 5, 3, 9, 0, 4, 0, 4, 3, 4, 1, 5, 0, 9, 1, 3, 0, 2, 6, 0, 5, 2, 4, 8, 0, 6, 1, 5, 1, 6, 5, 3, 9, 7, 5, 3, 5, 0, 8, 8, 3, 7, 8, 7, 4, 1, 9, 3, 2, 6, 9
Offset: 1

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  0.7589622035176968518571982860561050925949...
greatest x: 2.23580928206456912111526414831701984424...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = 3; c = 4;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .75, .76}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199961 *)
    r = x /. FindRoot[f[x] == g[x], {x, 2.2, 2.3}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199962 *)
  • PARI
    a=1; b=3; c=4; solve(x=2, 3, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 23 2018

A199963 Decimal expansion of least x satisfying x^2 + 4*cos(x) = 3*sin(x).

Original entry on oeis.org

1, 2, 3, 9, 7, 5, 1, 1, 5, 4, 8, 3, 0, 7, 0, 3, 3, 2, 2, 6, 6, 3, 0, 9, 4, 2, 9, 8, 7, 0, 9, 1, 8, 2, 0, 7, 2, 6, 0, 6, 9, 1, 2, 5, 7, 4, 9, 4, 5, 2, 1, 7, 2, 4, 7, 2, 3, 1, 7, 5, 6, 5, 2, 6, 4, 7, 6, 7, 4, 5, 9, 6, 3, 6, 0, 1, 8, 5, 6, 2, 6, 2, 6, 5, 9, 7, 5, 8, 2, 5, 7, 9, 2, 3, 1, 8, 7, 4, 8
Offset: 1

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  1.2397511548307033226630942987091820...
greatest x: 2.178843303038438478747351546631120...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = 4; c = 3;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.23, 1.24}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199963 *)
    r = x /. FindRoot[f[x] == g[x], {x, 2.17, 2.18}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199964 *)
  • PARI
    a=1; b=4; c=3; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 23 2018

A199964 Decimal expansion of greatest x satisfying x^2 + 4*cos(x) = 3*sin(x).

Original entry on oeis.org

2, 1, 7, 8, 8, 4, 3, 3, 0, 3, 0, 3, 8, 4, 3, 8, 4, 7, 8, 7, 4, 7, 3, 5, 1, 5, 4, 6, 6, 3, 1, 1, 2, 0, 7, 8, 8, 0, 9, 8, 3, 8, 5, 5, 8, 5, 8, 9, 3, 8, 0, 7, 1, 9, 4, 3, 7, 4, 9, 0, 8, 7, 6, 0, 0, 4, 7, 5, 6, 4, 2, 6, 7, 4, 4, 8, 5, 4, 0, 4, 7, 5, 3, 2, 0, 2, 9, 5, 4, 4, 4, 8, 4, 5, 2, 5, 9, 8, 6
Offset: 1

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  1.2397511548307033226630942987091820...
greatest x: 2.17884330303843847874735154663112...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = 4; c = 3;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.23, 1.24}, WorkingPrecision -> 110]
    RealDigits[r]   (* A199963 *)
    r = x /. FindRoot[f[x] == g[x], {x, 2.17, 2.18}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199964 *)
  • PARI
    a=1; b=4; c=3; solve(x=2, 3, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 23 2018

A199965 Decimal expansion of least x satisfying x^2 + 4*cos(x) = 4*sin(x).

Original entry on oeis.org

9, 4, 3, 3, 7, 9, 5, 7, 1, 5, 9, 1, 7, 9, 4, 6, 2, 2, 0, 8, 4, 1, 6, 7, 0, 2, 0, 5, 1, 5, 6, 3, 9, 8, 3, 8, 6, 1, 9, 2, 7, 5, 7, 1, 7, 2, 6, 5, 9, 1, 0, 4, 8, 4, 0, 1, 9, 0, 9, 2, 2, 8, 9, 2, 7, 0, 3, 8, 2, 6, 3, 8, 9, 2, 0, 0, 2, 3, 9, 8, 2, 6, 4, 6, 2, 1, 3, 8, 9, 7, 9, 5, 0, 7, 5, 4, 5, 6, 0
Offset: 0

Views

Author

Clark Kimberling, Nov 12 2011

Keywords

Comments

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least x:  0.943379571591794622084167020515639838...
greatest x: 2.3781281686737679859682016614728862...
		

Crossrefs

Cf. A199949.

Programs

  • Mathematica
    a = 1; b = 4; c = 4;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
    Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .94, .95}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199965 *)
    r = x /. FindRoot[f[x] == g[x], {x, 2.37, 2.38}, WorkingPrecision -> 110]
    RealDigits[r]  (* A199966 *)
  • PARI
    a=1; b=4; c=4; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 23 2018
Previous Showing 11-20 of 136 results. Next