cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 158 results. Next

A200348 Decimal expansion of least x>0 satisfying x^2+2x+3=tan(x).

Original entry on oeis.org

1, 4, 4, 6, 1, 9, 2, 4, 9, 5, 1, 6, 1, 0, 3, 6, 9, 3, 8, 9, 4, 7, 5, 9, 6, 0, 3, 9, 9, 3, 7, 2, 1, 2, 7, 4, 0, 5, 3, 0, 0, 7, 9, 5, 3, 2, 7, 6, 4, 2, 6, 9, 3, 6, 1, 9, 4, 0, 6, 5, 0, 5, 2, 0, 6, 5, 5, 9, 8, 5, 9, 2, 6, 0, 2, 6, 0, 7, 5, 3, 6, 5, 2, 3, 5, 3, 4, 7, 4, 8, 7, 8, 0, 1, 9, 1, 7, 7, 0
Offset: 1

Views

Author

Clark Kimberling, Nov 16 2011

Keywords

Comments

See A200338 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=1.4461924951610369389475960399372127405300...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 1; b = 2; c = 3;
    f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200348 *)

A200349 Decimal expansion of least x>0 satisfying x^2+2x+4=tan(x).

Original entry on oeis.org

1, 4, 6, 0, 8, 1, 3, 0, 5, 2, 2, 2, 3, 0, 5, 1, 5, 0, 3, 4, 1, 9, 2, 4, 2, 6, 6, 3, 3, 7, 9, 0, 6, 0, 0, 7, 2, 4, 9, 3, 2, 4, 7, 9, 1, 0, 1, 6, 3, 7, 8, 1, 5, 6, 2, 0, 1, 0, 3, 9, 3, 2, 4, 6, 1, 9, 8, 2, 2, 2, 7, 0, 4, 5, 2, 4, 4, 1, 7, 9, 9, 1, 3, 6, 9, 8, 4, 6, 2, 2, 3, 8, 0, 9, 6, 2, 2, 6, 8
Offset: 1

Views

Author

Clark Kimberling, Nov 16 2011

Keywords

Comments

See A200338 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=1.460813052223051503419242663379060072493247910...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 1; b = 2; c = 4;
    f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200349 *)

A200350 Decimal expansion of least x>0 satisfying x^2+3x+1=tan(x).

Original entry on oeis.org

1, 4, 3, 5, 9, 2, 8, 9, 0, 2, 3, 3, 8, 6, 4, 1, 2, 9, 9, 0, 3, 2, 0, 3, 2, 4, 4, 8, 3, 2, 2, 1, 4, 2, 5, 7, 2, 2, 7, 2, 1, 7, 1, 9, 3, 6, 9, 9, 6, 8, 5, 8, 1, 8, 7, 0, 3, 5, 0, 7, 5, 4, 2, 2, 8, 7, 5, 0, 8, 2, 0, 8, 2, 4, 6, 0, 9, 8, 1, 5, 0, 1, 0, 4, 2, 1, 0, 4, 5, 9, 8, 2, 1, 7, 3, 3, 2, 6, 1
Offset: 1

Views

Author

Clark Kimberling, Nov 16 2011

Keywords

Comments

See A200338 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=1.4359289023386412990320324483221425722721719...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 1; b = 3; c = 1;
    f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200350 *)

A200351 Decimal expansion of least x>0 satisfying x^2+3x+2=tan(x).

Original entry on oeis.org

1, 4, 5, 3, 3, 0, 4, 1, 5, 8, 5, 7, 4, 3, 3, 6, 7, 9, 5, 3, 0, 4, 0, 2, 9, 6, 2, 5, 8, 3, 8, 5, 5, 0, 8, 8, 6, 8, 8, 6, 6, 0, 5, 7, 0, 7, 5, 5, 8, 7, 5, 9, 8, 4, 0, 0, 7, 0, 0, 5, 3, 4, 8, 7, 1, 0, 2, 2, 1, 7, 1, 2, 6, 6, 3, 4, 4, 4, 9, 4, 3, 9, 8, 8, 3, 6, 1, 3, 2, 7, 3, 5, 2, 9, 6, 6, 8, 7, 9
Offset: 1

Views

Author

Clark Kimberling, Nov 17 2011

Keywords

Comments

See A200338 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=1.453304158574336795304029625838550886...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 1; b = 3; c = 2;
    f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200351 *)

A200352 Decimal expansion of least x>0 satisfying x^2+3x+3=tan(x).

Original entry on oeis.org

1, 4, 6, 6, 4, 6, 3, 4, 7, 1, 0, 1, 0, 8, 5, 3, 8, 0, 8, 0, 2, 1, 1, 8, 1, 5, 1, 4, 4, 7, 5, 9, 8, 2, 1, 8, 5, 5, 3, 6, 6, 1, 5, 5, 1, 2, 9, 5, 9, 0, 0, 4, 1, 3, 3, 1, 8, 8, 4, 4, 4, 8, 2, 3, 5, 4, 9, 4, 9, 6, 3, 0, 6, 8, 9, 4, 5, 8, 8, 7, 1, 7, 1, 2, 9, 1, 4, 6, 0, 8, 9, 0, 7, 8, 6, 5, 0, 6, 2
Offset: 1

Views

Author

Clark Kimberling, Nov 17 2011

Keywords

Comments

See A200338 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=1.4664634710108538080211815144759821855...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 1; b = 3; c = 3;
    f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200352 *)

A200353 Decimal expansion of least x > 0 satisfying x^2 + 3*x + 4 = tan(x).

Original entry on oeis.org

1, 4, 7, 6, 8, 3, 6, 9, 4, 2, 0, 3, 5, 6, 2, 9, 5, 9, 6, 6, 0, 0, 2, 2, 5, 3, 3, 2, 4, 9, 9, 6, 8, 5, 6, 6, 4, 3, 5, 6, 7, 9, 0, 2, 8, 3, 6, 1, 0, 4, 8, 0, 7, 3, 0, 9, 4, 9, 8, 8, 6, 3, 5, 6, 4, 4, 5, 2, 4, 3, 6, 7, 8, 9, 5, 0, 5, 0, 9, 7, 7, 6, 6, 8, 3, 9, 3, 5, 1, 8, 0, 0, 6, 7, 4, 2, 8, 5, 4
Offset: 1

Views

Author

Clark Kimberling, Nov 17 2011

Keywords

Comments

See A200338 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.4768369420356295966002253324996856643...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 1; b = 3; c = 4;
    f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200353 *)
  • PARI
    solve(x=1, 3/2, x^2 + 3*x + 4 - tan(x)) \\ Michel Marcus, Aug 05 2018

Extensions

Terms a(90) onward corrected by G. C. Greubel, Aug 04 2018

A200354 Decimal expansion of least x > 0 satisfying x^2 + 4*x + 1 = tan(x).

Original entry on oeis.org

1, 4, 5, 9, 7, 7, 2, 3, 4, 6, 4, 3, 8, 5, 7, 0, 0, 3, 3, 7, 7, 1, 7, 0, 2, 8, 7, 3, 5, 8, 9, 5, 4, 4, 7, 7, 3, 5, 3, 9, 9, 8, 8, 7, 3, 5, 6, 9, 6, 4, 4, 6, 5, 6, 2, 2, 5, 0, 4, 5, 4, 2, 3, 5, 9, 0, 1, 7, 7, 2, 9, 1, 0, 2, 7, 3, 1, 6, 6, 5, 6, 2, 5, 0, 4, 5, 5, 5, 6, 5, 5, 8, 4, 2, 1, 2, 1, 4, 8
Offset: 1

Views

Author

Clark Kimberling, Nov 17 2011

Keywords

Comments

See A200338 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.45977234643857003377170287358954477353...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 1; b = 4; c = 1;
    f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200354 *)
  • PARI
    solve(x=1, 3/2, x^2 + 4*x + 1 - tan(x)) \\ Michel Marcus, Aug 05 2018

A200355 Decimal expansion of least x>0 satisfying x^2+4x+2=tan(x).

Original entry on oeis.org

1, 4, 7, 1, 6, 4, 2, 8, 6, 9, 7, 6, 5, 3, 3, 8, 3, 0, 6, 1, 1, 0, 9, 6, 4, 7, 9, 3, 2, 9, 4, 4, 0, 1, 5, 2, 1, 6, 6, 4, 6, 5, 3, 8, 3, 5, 3, 8, 1, 8, 3, 6, 4, 2, 3, 5, 0, 3, 0, 0, 4, 4, 6, 1, 9, 6, 9, 6, 0, 1, 8, 5, 8, 7, 0, 4, 9, 3, 1, 6, 3, 1, 7, 2, 3, 8, 8, 3, 5, 3, 5, 3, 5, 5, 9, 9, 6, 5, 0
Offset: 1

Views

Author

Clark Kimberling, Nov 17 2011

Keywords

Comments

See A200338 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=1.4716428697653383061109647932944015...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 1; b = 4; c = 2;
    f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200355 *)

A200356 Decimal expansion of least x>0 satisfying x^2+4x+3=tan(x).

Original entry on oeis.org

1, 4, 8, 1, 0, 9, 3, 5, 7, 0, 0, 9, 6, 8, 2, 8, 2, 3, 1, 2, 1, 6, 9, 9, 4, 9, 3, 4, 8, 4, 7, 0, 5, 9, 9, 5, 0, 9, 7, 3, 0, 5, 5, 4, 7, 5, 7, 9, 9, 9, 8, 9, 6, 9, 9, 8, 1, 6, 4, 2, 8, 2, 3, 0, 3, 0, 5, 5, 8, 5, 9, 0, 8, 6, 1, 2, 0, 6, 4, 7, 4, 3, 5, 7, 5, 0, 0, 0, 1, 3, 1, 0, 7, 8, 0, 2, 0, 4, 0
Offset: 1

Views

Author

Clark Kimberling, Nov 17 2011

Keywords

Comments

See A200338 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=1.4810935700968282312169949348470599509730...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 1; b = 4; c = 3;
    f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200356 *)

A200357 Decimal expansion of least x>0 satisfying x^2+4x+4=tan(x).

Original entry on oeis.org

1, 4, 8, 8, 8, 2, 3, 9, 3, 2, 0, 0, 4, 9, 5, 7, 6, 8, 9, 0, 1, 1, 0, 2, 5, 6, 8, 5, 3, 8, 5, 4, 4, 3, 7, 5, 7, 9, 3, 0, 7, 0, 5, 3, 2, 8, 0, 6, 8, 3, 5, 6, 9, 4, 3, 3, 1, 2, 5, 1, 0, 6, 7, 6, 4, 3, 4, 7, 5, 1, 8, 9, 6, 9, 5, 9, 6, 9, 1, 2, 0, 1, 4, 1, 8, 5, 6, 7, 1, 2, 7, 9, 4, 3, 3, 2, 9, 7, 3
Offset: 1

Views

Author

Clark Kimberling, Nov 17 2011

Keywords

Comments

See A200338 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			x=1.48882393200495768901102568538544375793070...
		

Crossrefs

Cf. A200338.

Programs

  • Mathematica
    a = 1; b = 4; c = 4;
    f[x_] := a*x^2 + b*x + c; g[x_] := Tan[x]
    Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A200357 *)
Previous Showing 11-20 of 158 results. Next