cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 45 results. Next

A201516 Decimal expansion of greatest x satisfying 3*x^2 - 1 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

1, 3, 4, 1, 4, 3, 0, 1, 6, 6, 2, 9, 1, 2, 5, 9, 7, 6, 4, 5, 7, 6, 0, 8, 0, 5, 0, 6, 7, 6, 3, 6, 1, 4, 1, 7, 1, 7, 7, 1, 4, 0, 8, 2, 9, 1, 7, 9, 4, 8, 3, 0, 1, 1, 3, 0, 7, 5, 1, 6, 4, 3, 7, 7, 1, 8, 0, 4, 9, 8, 8, 2, 4, 9, 6, 7, 8, 0, 0, 0, 6, 9, 8, 5, 4, 2, 0, 4, 6, 3, 0, 5, 8, 6, 0, 2, 4, 9, 5
Offset: 1

Views

Author

Clark Kimberling, Dec 02 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.95353909754991468966727069537237822743...
greatest: 1.341430166291259764576080506763614171...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 3; c = -1;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .9, 1}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201515 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]  (* A201516 *)

A201517 Decimal expansion of least x satisfying 4*x^2 - 1 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

7, 7, 4, 4, 2, 7, 2, 5, 7, 0, 7, 9, 8, 9, 3, 6, 2, 3, 2, 5, 7, 0, 2, 9, 0, 0, 9, 0, 0, 0, 6, 2, 4, 5, 6, 3, 9, 8, 5, 9, 1, 3, 6, 7, 7, 8, 3, 5, 0, 7, 9, 2, 6, 8, 7, 8, 4, 2, 5, 9, 1, 6, 0, 5, 0, 5, 9, 2, 7, 3, 0, 3, 6, 8, 2, 5, 8, 1, 2, 4, 6, 4, 8, 7, 2, 7, 2, 4, 4, 6, 5, 7, 4, 2, 9, 1, 6, 4, 1
Offset: 0

Views

Author

Clark Kimberling, Dec 02 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.774427257079893623257029009000...
greatest: 1.4313635500690391357640449937...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 4; c = -1;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .7, .8}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201517 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201518 *)

A201518 Decimal expansion of greatest x satisfying 4*x^2 - 1 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

1, 4, 3, 1, 3, 6, 3, 5, 5, 0, 0, 6, 9, 0, 3, 9, 1, 3, 5, 7, 6, 4, 0, 4, 4, 9, 9, 3, 7, 8, 2, 7, 5, 4, 2, 1, 3, 0, 4, 1, 2, 3, 9, 5, 6, 8, 1, 7, 9, 9, 6, 4, 5, 3, 6, 5, 1, 5, 2, 4, 6, 6, 6, 2, 8, 0, 3, 0, 0, 3, 3, 6, 4, 7, 5, 9, 5, 6, 4, 3, 9, 0, 3, 8, 9, 5, 2, 1, 6, 2, 8, 8, 2, 5, 4, 7, 9, 9, 4
Offset: 1

Views

Author

Clark Kimberling, Dec 02 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.774427257079893623257029009000...
greatest: 1.4313635500690391357640449937...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 4; c = -1;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .7, .8}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201517 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201518 *)

A201519 Decimal expansion of least x satisfying 5*x^2 - 1 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

6, 7, 5, 4, 8, 2, 9, 0, 8, 1, 1, 3, 7, 2, 4, 2, 2, 8, 0, 1, 5, 1, 7, 8, 8, 5, 8, 1, 9, 0, 8, 2, 7, 3, 1, 5, 9, 4, 1, 0, 7, 4, 0, 1, 2, 5, 4, 4, 0, 8, 8, 0, 7, 9, 6, 4, 4, 8, 5, 0, 8, 0, 4, 5, 2, 7, 2, 3, 7, 1, 5, 8, 0, 3, 2, 5, 1, 7, 3, 9, 1, 3, 5, 7, 5, 5, 1, 1, 7, 5, 3, 3, 0, 3, 5, 5, 2, 1, 1
Offset: 0

Views

Author

Clark Kimberling, Dec 02 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.675482908113724228015178858190...
greatest: 1.4683742920332829376554687815...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 5; c = -1;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .6, .7}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201519 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201520 *)

A201520 Decimal expansion of greatest x satisfying 5*x^2 - 1 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

1, 4, 6, 8, 3, 7, 4, 2, 9, 2, 0, 3, 3, 2, 8, 2, 9, 3, 7, 6, 5, 5, 4, 6, 8, 7, 8, 1, 5, 8, 0, 5, 4, 6, 6, 9, 4, 6, 9, 2, 0, 5, 9, 7, 4, 2, 8, 6, 1, 4, 1, 7, 5, 6, 0, 3, 2, 9, 3, 8, 4, 9, 7, 7, 5, 5, 7, 5, 6, 9, 6, 9, 3, 6, 9, 2, 3, 4, 0, 7, 1, 4, 5, 9, 7, 9, 0, 3, 1, 1, 3, 5, 3, 2, 8, 4, 7, 8, 5
Offset: 1

Views

Author

Clark Kimberling, Dec 02 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least: 0.675482908113724228015178858190...
greatest: 1.4683742920332829376554687815...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 5; c = -1;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .6, .7}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201519 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201520 *)

A201521 Decimal expansion of least x satisfying 6*x^2 - 1 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

6, 0, 8, 0, 5, 4, 4, 7, 7, 9, 9, 7, 9, 1, 3, 0, 5, 3, 3, 2, 7, 9, 9, 5, 7, 2, 2, 5, 1, 0, 8, 9, 7, 6, 1, 7, 8, 8, 5, 3, 2, 9, 6, 8, 8, 0, 9, 3, 5, 3, 6, 0, 8, 7, 7, 7, 4, 5, 4, 0, 5, 6, 5, 6, 6, 4, 3, 4, 7, 5, 2, 1, 6, 4, 7, 2, 0, 8, 0, 8, 5, 1, 2, 1, 0, 0, 0, 3, 6, 7, 9, 4, 8, 7, 2, 9, 3, 4, 4
Offset: 0

Views

Author

Clark Kimberling, Dec 02 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.60805447799791305332799572251089761...
greatest: 1.489480656731833320399126017677317...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 6; c = -1;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .6, .7}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201521 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201522 *)

A201522 Decimal expansion of greatest x satisfying 6*x^2 - 1 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

1, 4, 8, 9, 4, 8, 0, 6, 5, 6, 7, 3, 1, 8, 3, 3, 3, 2, 0, 3, 9, 9, 1, 2, 6, 0, 1, 7, 6, 7, 7, 3, 1, 7, 5, 4, 4, 9, 4, 3, 3, 6, 9, 1, 4, 8, 0, 6, 1, 5, 0, 7, 0, 4, 7, 3, 0, 5, 6, 8, 8, 5, 1, 9, 2, 7, 5, 0, 4, 5, 7, 7, 5, 1, 2, 6, 7, 8, 1, 6, 2, 9, 7, 4, 3, 0, 6, 2, 3, 7, 3, 9, 0, 3, 5, 3, 3, 5, 5
Offset: 1

Views

Author

Clark Kimberling, Dec 02 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.60805447799791305332799572251089761...
greatest: 1.489480656731833320399126017677317...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 6; c = -1;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .6, .7}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201521 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201522 *)

A201523 Decimal expansion of least x satisfying 7*x^2 - 1 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

5, 5, 7, 8, 9, 5, 1, 7, 5, 7, 7, 9, 0, 3, 5, 2, 9, 9, 8, 3, 2, 8, 6, 9, 7, 3, 6, 3, 1, 3, 8, 7, 3, 7, 9, 8, 3, 9, 2, 7, 5, 7, 3, 9, 8, 4, 7, 4, 4, 1, 5, 3, 6, 3, 8, 0, 6, 8, 1, 1, 8, 6, 2, 6, 2, 0, 8, 9, 0, 3, 8, 8, 6, 4, 1, 1, 8, 6, 4, 3, 1, 4, 9, 8, 1, 9, 8, 7, 9, 0, 5, 1, 2, 7, 0, 9, 2, 2, 0
Offset: 0

Views

Author

Clark Kimberling, Dec 02 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.557895175779035299832869736313873...
greatest: 1.5032621521314930999190799075200...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 7; c = -1;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201523 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201524 *)

A201524 Decimal expansion of greatest x satisfying 7*x^2 - 1 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

1, 5, 0, 3, 2, 6, 2, 1, 5, 2, 1, 3, 1, 4, 9, 3, 0, 9, 9, 9, 1, 9, 0, 7, 9, 9, 0, 7, 5, 2, 0, 0, 8, 3, 0, 8, 2, 9, 0, 8, 3, 4, 3, 1, 7, 1, 5, 6, 2, 7, 8, 2, 9, 3, 8, 3, 2, 1, 0, 3, 3, 2, 1, 4, 8, 8, 7, 2, 7, 4, 9, 7, 2, 3, 3, 7, 5, 1, 4, 2, 4, 9, 8, 0, 0, 9, 9, 4, 8, 7, 2, 9, 9, 6, 6, 2, 0, 5, 6
Offset: 1

Views

Author

Clark Kimberling, Dec 02 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.557895175779035299832869736313873...
greatest: 1.5032621521314930999190799075200...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 7; c = -1;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201523 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201524 *)

A201525 Decimal expansion of least x satisfying 8*x^2 - 1 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

5, 1, 8, 5, 7, 7, 0, 0, 2, 2, 0, 1, 7, 1, 1, 4, 5, 8, 2, 5, 3, 1, 0, 9, 8, 2, 0, 4, 1, 7, 2, 4, 4, 9, 9, 4, 8, 3, 1, 0, 4, 3, 3, 3, 7, 0, 3, 4, 8, 6, 2, 9, 7, 2, 7, 1, 9, 3, 3, 8, 9, 8, 0, 8, 1, 5, 4, 5, 0, 6, 9, 7, 3, 1, 1, 0, 2, 9, 7, 7, 7, 1, 8, 4, 3, 4, 8, 1, 3, 2, 6, 4, 1, 2, 8, 0, 7, 3, 0
Offset: 0

Views

Author

Clark Kimberling, Dec 02 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.518577002201711458253109820417244...
greatest: 1.5130057374477490977746930540120...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 8; c = -1;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201525 *)
    r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201526 *)
Previous Showing 21-30 of 45 results. Next