cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-45 of 45 results.

A201402 Decimal expansion of x satisfying x^2 + 7 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

1, 4, 6, 1, 1, 0, 5, 3, 6, 4, 6, 3, 0, 1, 6, 7, 7, 8, 2, 2, 7, 7, 7, 8, 0, 7, 0, 2, 7, 3, 7, 6, 2, 2, 0, 7, 2, 6, 5, 2, 7, 6, 0, 9, 7, 5, 5, 9, 9, 9, 4, 2, 4, 9, 5, 8, 9, 4, 8, 7, 0, 4, 1, 8, 9, 8, 4, 8, 3, 9, 0, 9, 6, 5, 4, 3, 1, 6, 8, 7, 6, 7, 2, 8, 6, 8, 9, 6, 4, 2, 3, 0, 3, 7, 4, 4, 9, 6, 3
Offset: 1

Views

Author

Clark Kimberling, Dec 01 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.461105364630167782277780702737622072652...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 1; c = 7;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201402 *)

A201403 Decimal expansion of x satisfying x^2 + 8 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

1, 4, 7, 2, 2, 8, 5, 6, 9, 0, 4, 6, 1, 3, 4, 7, 6, 6, 2, 3, 7, 1, 4, 6, 4, 5, 4, 7, 8, 2, 4, 0, 4, 0, 1, 9, 5, 4, 5, 3, 2, 9, 4, 9, 3, 6, 6, 0, 9, 0, 1, 6, 2, 8, 3, 7, 4, 5, 4, 0, 1, 1, 7, 2, 4, 5, 1, 0, 4, 8, 4, 0, 8, 2, 2, 0, 9, 8, 2, 4, 3, 6, 7, 0, 1, 3, 8, 9, 2, 1, 7, 7, 2, 5, 2, 3, 8, 0, 5, 5, 7
Offset: 1

Views

Author

Clark Kimberling, Dec 01 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.472285690461347662371464547824040195...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 1; c = 8;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]     (* A201403 *)

A201404 Decimal expansion of x satisfying x^2 + 9 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

1, 4, 8, 1, 3, 4, 6, 6, 1, 2, 6, 2, 9, 7, 1, 7, 6, 7, 5, 9, 7, 6, 5, 3, 6, 8, 4, 1, 5, 7, 9, 5, 6, 5, 2, 3, 0, 3, 0, 3, 3, 0, 0, 0, 1, 8, 1, 5, 5, 5, 1, 0, 5, 2, 7, 4, 8, 9, 3, 4, 5, 5, 0, 6, 7, 0, 9, 9, 9, 5, 7, 6, 2, 4, 3, 8, 4, 1, 7, 7, 8, 3, 8, 9, 3, 0, 4, 3, 4, 0, 3, 1, 7, 3, 3, 2, 6, 7, 2
Offset: 1

Views

Author

Clark Kimberling, Dec 01 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.4813466126297176759765368415795652303033000...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 1; c = 9;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201404 *)

A201405 Decimal expansion of x satisfying x^2 + 10 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

1, 4, 8, 8, 8, 4, 9, 2, 8, 9, 1, 6, 4, 2, 2, 2, 1, 0, 6, 3, 3, 0, 9, 9, 6, 1, 5, 8, 9, 4, 1, 3, 3, 4, 3, 7, 5, 5, 3, 8, 1, 3, 6, 3, 6, 5, 0, 9, 7, 0, 2, 0, 5, 2, 1, 5, 5, 2, 9, 0, 4, 1, 0, 4, 8, 6, 7, 8, 8, 3, 4, 7, 3, 1, 4, 6, 5, 2, 1, 6, 9, 2, 1, 8, 2, 4, 4, 3, 0, 4, 5, 1, 4, 2, 8, 1, 5, 3, 1
Offset: 1

Views

Author

Clark Kimberling, Dec 01 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.48884928916422210633099615894133...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 1; c = 10;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201405 *)

A201531 Decimal expansion of x satisfying 2*x^2 + 3 = sec(x) and 0 < x < Pi.

Original entry on oeis.org

1, 4, 2, 9, 1, 8, 2, 7, 3, 2, 5, 9, 7, 0, 1, 8, 3, 6, 7, 8, 2, 0, 2, 8, 8, 4, 2, 1, 5, 7, 3, 7, 9, 3, 6, 7, 4, 4, 7, 8, 9, 8, 1, 0, 4, 4, 9, 0, 6, 9, 1, 5, 7, 0, 5, 8, 8, 2, 4, 0, 5, 5, 3, 2, 6, 6, 7, 4, 1, 7, 8, 6, 3, 0, 7, 4, 4, 3, 1, 6, 8, 3, 5, 3, 2, 4, 0, 7, 4, 8, 1, 0, 3, 5, 6, 5, 8, 0, 4
Offset: 1

Views

Author

Clark Kimberling, Dec 02 2011

Keywords

Comments

See A201397 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			1.42918273259701836782028842157379367447...
		

Crossrefs

Cf. A201397.

Programs

  • Mathematica
    a = 2; c = 3;
    f[x_] := a*x^2 + c; g[x_] := Sec[x]
    Plot[{f[x], g[x]}, {x, 0, Pi/2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201531 *)
Previous Showing 41-45 of 45 results.