cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 63 results. Next

A201576 Decimal expansion of least x satisfying x^2 + 8 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

1, 2, 5, 0, 8, 1, 9, 2, 2, 6, 3, 5, 9, 9, 7, 4, 4, 1, 2, 8, 9, 1, 7, 7, 7, 0, 1, 6, 5, 3, 7, 8, 5, 7, 0, 7, 1, 8, 7, 6, 5, 5, 4, 8, 7, 1, 3, 4, 6, 8, 7, 6, 2, 6, 4, 8, 0, 7, 0, 8, 7, 1, 4, 2, 1, 6, 3, 6, 8, 2, 8, 2, 2, 8, 9, 2, 4, 8, 7, 3, 4, 6, 3, 7, 1, 4, 1, 7, 7, 6, 1, 6, 6, 7, 2, 8, 5, 5, 2
Offset: 0

Views

Author

Clark Kimberling, Dec 03 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.125081922635997441289177701653785707187...
greatest:  3.084464140564380849459190595364646021...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 1; c = 8;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201576 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201577 *)
  • PARI
    a=1; c=8; solve(x=0.1, 0.2, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 21 2018

A201577 Decimal expansion of greatest x satisfying x^2 + 8 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

3, 0, 8, 4, 4, 6, 4, 1, 4, 0, 5, 6, 4, 3, 8, 0, 8, 4, 9, 4, 5, 9, 1, 9, 0, 5, 9, 5, 3, 6, 4, 6, 4, 6, 0, 2, 1, 8, 3, 3, 5, 2, 0, 6, 1, 4, 9, 0, 4, 5, 8, 6, 4, 7, 6, 8, 3, 8, 8, 2, 8, 5, 6, 2, 6, 8, 3, 0, 8, 4, 7, 2, 4, 3, 6, 7, 1, 4, 1, 4, 6, 2, 8, 5, 9, 3, 5, 3, 3, 4, 0, 8, 3, 2, 7, 8, 3, 5, 8
Offset: 1

Views

Author

Clark Kimberling, Dec 03 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.125081922635997441289177701653785707187...
greatest:  3.084464140564380849459190595364646021...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 1; c = 8;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201576 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201577 *)
  • PARI
    a=1; c=8; solve(x=3, 3.1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 21 2018

A201580 Decimal expansion of greatest x satisfying x^2 + 9 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

3, 0, 8, 7, 6, 0, 9, 6, 0, 2, 7, 8, 3, 6, 0, 6, 1, 3, 3, 0, 0, 1, 1, 9, 0, 4, 9, 8, 8, 4, 6, 7, 0, 1, 5, 0, 7, 7, 1, 5, 8, 0, 1, 9, 5, 4, 6, 6, 8, 5, 6, 6, 5, 3, 7, 9, 3, 4, 2, 4, 0, 9, 4, 1, 4, 2, 9, 0, 1, 8, 0, 5, 2, 0, 5, 2, 6, 7, 1, 8, 3, 9, 8, 1, 8, 5, 7, 2, 8, 3, 5, 2, 7, 8, 2, 3, 7, 6, 2
Offset: 1

Views

Author

Clark Kimberling, Dec 03 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.111187649530336552411321691800657533611...
greatest:  3.087609602783606133001190498846701507...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 1; c = 9;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201578 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201580 *)
  • PARI
    a=1; c=9; solve(x=3, 3.1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 21 2018

A201581 Decimal expansion of greatest x satisfying x^2 + 10 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

3, 0, 9, 0, 4, 2, 1, 2, 7, 0, 1, 5, 2, 1, 5, 1, 4, 5, 3, 6, 5, 1, 4, 9, 7, 4, 4, 3, 8, 9, 9, 9, 2, 0, 5, 3, 4, 3, 8, 7, 8, 8, 2, 1, 3, 8, 3, 1, 5, 6, 3, 5, 0, 1, 4, 0, 8, 5, 5, 5, 5, 1, 8, 9, 9, 6, 6, 3, 6, 3, 1, 5, 9, 8, 0, 6, 4, 7, 6, 1, 2, 8, 4, 0, 6, 0, 6, 1, 1, 0, 6, 8, 9, 9, 4, 4, 5, 3, 4
Offset: 1

Views

Author

Clark Kimberling, Dec 03 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.100066884072919309279805384459381115060...
greatest:  3.090421270152151453651497443899920534...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 1; c = 10;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .1, .2}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201578 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201581 *)
  • PARI
    a=1; c=10; solve(x=3, 3.1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 21 2018

A201583 Decimal expansion of least x satisfying 2*x^2 = csc(x) and 0

Original entry on oeis.org

8, 2, 5, 0, 2, 8, 9, 2, 4, 0, 1, 5, 0, 0, 6, 3, 3, 9, 3, 3, 3, 9, 4, 6, 3, 1, 8, 1, 8, 3, 3, 5, 7, 9, 7, 8, 6, 9, 2, 2, 8, 7, 1, 0, 1, 4, 8, 2, 8, 7, 1, 0, 8, 8, 5, 2, 7, 4, 2, 5, 2, 0, 4, 2, 7, 7, 8, 5, 7, 4, 3, 9, 1, 0, 4, 3, 1, 4, 1, 6, 8, 3, 6, 0, 1, 4, 4, 0, 9, 8, 7, 0, 3, 4, 7, 3, 9, 6, 2
Offset: 0

Views

Author

Clark Kimberling, Dec 03 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.825028924015006339333946318183357978692...
greatest:  3.089174211929930206560577487869973804...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 2; c = 0;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .8, .9}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201583 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201584 *)
  • PARI
    a=2; c=0; solve(x=0.5, 1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 22 2018

A201584 Decimal expansion of greatest x satisfying 2*x^2 = csc(x) and 0

Original entry on oeis.org

3, 0, 8, 9, 1, 7, 4, 2, 1, 1, 9, 2, 9, 9, 3, 0, 2, 0, 6, 5, 6, 0, 5, 7, 7, 4, 8, 7, 8, 6, 9, 9, 7, 3, 8, 0, 4, 9, 3, 7, 1, 6, 3, 0, 9, 6, 5, 6, 6, 7, 2, 1, 0, 0, 2, 6, 5, 8, 0, 5, 8, 8, 2, 2, 6, 9, 1, 1, 0, 0, 8, 9, 9, 1, 3, 2, 5, 0, 5, 1, 6, 3, 6, 1, 8, 4, 8, 9, 4, 4, 8, 0, 0, 1, 6, 6, 3, 6, 6
Offset: 1

Views

Author

Clark Kimberling, Dec 03 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.825028924015006339333946318183357978692...
greatest:  3.089174211929930206560577487869973804...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 2; c = 0;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .8, .9}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201583 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.1}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201584 *)
  • PARI
    a=2; c=0; solve(x=3, 3.1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 22 2018

A201585 Decimal expansion of least x satisfying 3*x^2 = csc(x) and 0

Original entry on oeis.org

7, 1, 3, 6, 1, 1, 5, 4, 1, 0, 6, 5, 4, 5, 3, 5, 1, 6, 9, 6, 7, 1, 2, 3, 4, 8, 7, 4, 8, 4, 8, 2, 8, 2, 3, 1, 1, 4, 4, 0, 0, 5, 5, 5, 1, 9, 8, 5, 0, 0, 2, 7, 5, 7, 8, 8, 6, 3, 6, 5, 8, 4, 1, 9, 1, 4, 4, 4, 9, 9, 0, 3, 5, 1, 3, 2, 8, 5, 5, 6, 4, 8, 4, 8, 0, 8, 7, 8, 7, 0, 0, 2, 5, 8, 9, 6, 5, 5, 0
Offset: 0

Views

Author

Clark Kimberling, Dec 03 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.71361154106545351696712348748482823114400555...
greatest:  3.10705708466927913942133639758902326551860...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 3; c = 0;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .7, .8}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201585 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201586 *)
  • PARI
    a=3; c=0; solve(x=0.5, 1, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 22 2018

A201586 Decimal expansion of greatest x satisfying 3*x^2 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

3, 1, 0, 7, 0, 5, 7, 0, 8, 4, 6, 6, 9, 2, 7, 9, 1, 3, 9, 4, 2, 1, 3, 3, 6, 3, 9, 7, 5, 8, 9, 0, 2, 3, 2, 6, 5, 5, 1, 8, 6, 0, 5, 8, 8, 9, 3, 2, 2, 5, 2, 6, 6, 1, 3, 6, 2, 2, 4, 2, 2, 4, 1, 7, 2, 2, 9, 4, 1, 3, 6, 5, 7, 1, 6, 6, 3, 2, 5, 1, 8, 1, 3, 0, 2, 2, 1, 8, 8, 2, 7, 7, 7, 5, 6, 4, 8, 2, 6
Offset: 1

Views

Author

Clark Kimberling, Dec 03 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.71361154106545351696712348748482823114400555...
greatest:  3.10705708466927913942133639758902326551860...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 3; c = 0;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .7, .8}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201585 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110]
    RealDigits[r]    (* A201586 *)
  • PARI
    a=3; c=0; solve(x=3.1, 3.14, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 22 2018

A201587 Decimal expansion of least x satisfying 4*x^2 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

6, 4, 4, 8, 9, 7, 4, 7, 5, 5, 4, 3, 6, 7, 3, 8, 3, 4, 4, 4, 3, 3, 5, 7, 3, 9, 0, 0, 4, 4, 4, 7, 4, 5, 2, 0, 1, 7, 0, 1, 3, 6, 8, 0, 5, 7, 9, 8, 7, 6, 3, 3, 7, 5, 0, 8, 8, 3, 4, 1, 4, 4, 8, 8, 6, 5, 5, 0, 7, 5, 9, 7, 3, 0, 8, 2, 2, 8, 5, 9, 1, 9, 6, 9, 6, 3, 7, 0, 0, 3, 0, 4, 9, 4, 5, 1, 7, 5, 1
Offset: 0

Views

Author

Clark Kimberling, Dec 03 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.6448974755436738344433573900444745201701368...
greatest:  3.1158390512762535211310850151952082587811...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 4; c = 0;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .6, .7}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201587 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201588 *)
  • PARI
    a=4; c=0; solve(x=0.6, 0.7, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 22 2018

A201588 Decimal expansion of greatest x satisfying 4*x^2 = csc(x) and 0 < x < Pi.

Original entry on oeis.org

3, 1, 1, 5, 8, 3, 9, 0, 5, 1, 2, 7, 6, 2, 5, 3, 5, 2, 1, 1, 3, 1, 0, 8, 5, 0, 1, 5, 1, 9, 5, 2, 0, 8, 2, 5, 8, 7, 8, 1, 1, 1, 2, 0, 9, 6, 5, 8, 8, 8, 1, 7, 4, 0, 1, 0, 7, 7, 2, 8, 9, 3, 9, 0, 0, 7, 8, 2, 4, 7, 0, 2, 2, 4, 1, 3, 9, 2, 7, 8, 4, 1, 4, 1, 9, 7, 4, 9, 9, 3, 0, 3, 8, 8, 6, 8, 6, 2, 4
Offset: 1

Views

Author

Clark Kimberling, Dec 03 2011

Keywords

Comments

See A201564 for a guide to related sequences. The Mathematica program includes a graph.

Examples

			least:  0.6448974755436738344433573900444745201701368...
greatest:  3.1158390512762535211310850151952082587811...
		

Crossrefs

Cf. A201564.

Programs

  • Mathematica
    a = 4; c = 0;
    f[x_] := a*x^2 + c; g[x_] := Csc[x]
    Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, .6, .7}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201587 *)
    r = x /. FindRoot[f[x] == g[x], {x, 3.1, 3.14}, WorkingPrecision -> 110]
    RealDigits[r]   (* A201588 *)
  • PARI
    a=4; c=0; solve(x=3.1, 3.14, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Aug 22 2018
Previous Showing 11-20 of 63 results. Next