cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 101-110 of 248 results. Next

A205390 s(k)-s(j), where (k,j) is the least pair for which n divides s(k)-s(j), and s(j)=(1/2)C(2j,j).

Original entry on oeis.org

2, 2, 9, 32, 25, 336, 7, 32, 9, 1590, 1254, 336, 91, 336, 1590, 32, 34, 24300, 1254, 6400, 336, 1254, 92368, 336, 25, 22594, 459, 336, 116, 1590, 260338, 32, 1254, 34, 1715, 24300, 24309, 1254, 4719, 6400, 123, 336, 57500460, 23848, 24300
Offset: 1

Views

Author

Clark Kimberling, Jan 27 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205386.)

A205395 The index j

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 1, 3, 3, 4, 2, 1, 3, 6, 2, 2, 1, 3, 5, 3, 4, 10, 2, 1, 7, 12, 3, 5, 8, 2, 1, 6, 4, 16, 2, 3, 5, 18, 2, 1, 12, 4, 6, 9, 3, 22, 7, 2, 1, 5, 14, 11, 4, 6, 6, 3, 9, 28, 2, 1, 19, 30, 10, 4, 8, 8, 3, 15, 20, 2, 1, 5, 7, 36, 10, 17, 4, 10, 3, 3
Offset: 1

Views

Author

Clark Kimberling, Jan 27 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205394.)

A205398 s(k)-s(j), where (k,j) is the least pair for which n divides s(k)-s(j), and s(j)=ceiling(j^2/2).

Original entry on oeis.org

1, 4, 3, 4, 5, 6, 7, 8, 27, 10, 11, 12, 13, 14, 30, 16, 17, 36, 19, 20, 42, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 70, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 100, 102, 52, 53, 54, 110, 56, 57, 58, 59, 60, 61, 62, 63, 64, 130, 66, 67
Offset: 1

Views

Author

Clark Kimberling, Jan 27 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205394.)

A205403 a(n) is the index j < k such that n divides s(k)-s(j) for some j, where s(j) = floor((j+1)^2/2)/2, and k is the least index for which such a j exists.

Original entry on oeis.org

1, 2, 1, 2, 1, 4, 2, 1, 2, 2, 1, 3, 6, 2, 1, 3, 2, 2, 1, 7, 3, 8, 2, 1, 4, 3, 5, 2, 1, 4, 9, 3, 5, 2, 1, 4, 6, 3, 9, 2, 1, 10, 4, 6, 3, 15, 2, 1, 2, 4, 10, 3, 3, 2, 1, 7, 15, 4, 20, 3, 8, 2, 1, 11, 7, 4, 5, 3, 6, 2, 1, 5, 11, 7, 4, 14, 3, 6, 2, 1
Offset: 1

Views

Author

Clark Kimberling, Jan 27 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205402.)

Extensions

Definition corrected by Clark Kimberling, Dec 05 2021

A205451 The index j

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 1, 3, 2, 1, 1, 2, 3, 5, 2, 3, 4, 2, 1, 1, 4, 2, 5, 2, 12, 2, 1, 3, 1, 4, 1, 3, 2, 4, 1, 6, 9, 1, 2, 6, 4, 4, 10, 1, 4, 5, 3, 6, 2, 11, 2, 2, 13, 1, 5, 3, 2, 1, 1, 2
Offset: 1

Views

Author

Clark Kimberling, Jan 27 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205450.)

A205454 s(k)-s(j), where (k,j) is the least pair for which n divides s(k)-s(j), and s(j)=Fibonacci(2j).

Original entry on oeis.org

2, 2, 18, 20, 5, 18, 7, 136, 18, 20, 143, 984, 13, 322, 46365, 2576, 34, 18, 6764, 20, 966, 374, 322, 984, 75025, 52, 54, 2576, 986, 317790, 2178308, 832032, 46365, 34, 17710, 46224, 4181, 6764, 2178306, 2440, 123, 966, 39603, 2178308, 317790
Offset: 1

Views

Author

Clark Kimberling, Jan 27 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205450.)

A205791 Least positive integer k such that n divides k^5-j^5 for some j in [1,k-1].

Original entry on oeis.org

2, 3, 4, 4, 6, 7, 8, 4, 6, 11, 3, 8, 14, 15, 16, 4, 18, 9, 20, 12, 22, 3, 24, 8, 6, 27, 6, 16, 30, 31, 2, 4, 4, 35, 36, 12, 38, 39, 40, 12, 7, 43, 44, 5, 18, 47, 48, 8, 14, 11, 52, 28, 54, 9, 7, 16, 58, 59, 60, 32, 7, 4, 24, 6, 66, 8, 68, 36, 70, 71, 4, 12, 74, 75, 16, 40
Offset: 1

Views

Author

Clark Kimberling, Feb 01 2012

Keywords

Comments

For a guide to related sequences, see A204892.
a(n) <= n+1. If n is divisible by p^2 then a(n) <= p+n/p. - Robert Israel, May 14 2021

Examples

			1 divides 2^5-1^5 -> k=2, j=1
2 divides 3^5-1^5 -> k=3, j=1
3 divides 4^5-1^5 -> k=4, j=1
4 divides 4^5-2^5 -> k=4, j=2
5 divides 6^5-1^5 -> k=6, j=1
6 divides 7^5-1^5 -> k=7, j=1
		

Crossrefs

Programs

  • Maple
    N:= 100: # for a(1)..a(N)
    V:= Vector(N):
    count:= 0:
    for k from 1 while count < N do
      for j from 1 to k-1 while count < N do
        Q:= select(t -> t <= N and V[t] = 0, numtheory:-divisors(k^5-j^5));
        if Q <> {} then
           newcount:= nops(Q);
           count:= count + newcount;
           V[convert(Q,list)]:= k;
        fi
    od od:
    convert(V,list); # Robert Israel, May 14 2021
  • Mathematica
    s = Table[n^4, {n, 1, 120}] ;
    lk = Table[
      NestWhile[# + 1 &, 1,
       Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1,
        Length[s]}]
    Table[NestWhile[# + 1 &, 1,
      Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &], {j, 1, Length[lk]}]
    (* Peter J. C. Moses, Jan 27 2012 *)
    Array[(k=1;While[FreeQ[Mod[Table[k^5-j^5,{j,k-1}],#],0],k++];k)&,100] (* Giorgos Kalogeropoulos, May 14 2021 *)

A205855 [s(k)-s(j)]/5, where the pairs (k,j) are given by A205852 and A205853, and s(k) denotes the (k+1)-st Fibonacci number.

Original entry on oeis.org

1, 2, 1, 4, 10, 11, 22, 11, 46, 45, 44, 75, 121, 111, 197, 122, 319, 244, 122, 510, 499, 488, 836, 832, 1352, 1342, 1231, 2189, 2185, 1353, 3542, 3538, 2706, 1353, 5731, 5656, 5534, 5412, 9273, 9272, 9271, 9227, 15004, 14994, 14883, 13652
Offset: 1

Views

Author

Clark Kimberling, Feb 02 2012

Keywords

Comments

For a guide to related sequences, see A205840.

Examples

			The first six terms match these differences:
s(5)-s(3) = 8-3 = 5 = 5*1
s(6)-s(3) = 13-3 = 10 = 5*2
s(6)-s(5) = 13-8 = 5 = 5*1
s(7)-s(1) = 21-1 = 20 = 5*4
s(9)-s(4) = 55-5 = 50 = 5*10
s(10)-s(8) = 89-34 = 55 =5*11
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Fibonacci[n + 1]; z1 = 500; z2 = 60;
    f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2];
    Table[s[n], {n, 1, 30}]
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]    (* A204922 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = Delete[w[n], Position[w[n], 0]]
    c = 5; t = d[c]    (* A205851 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2]
    j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2
    Table[k[n], {n, 1, z2}]   (* A205852 *)
    Table[j[n], {n, 1, z2}]   (* A205853 *)
    Table[s[k[n]]-s[j[n]], {n,1,z2}] (* A205854 *)
    Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205855 *)

A205860 [s(k)-s(j)]/6, where the pairs (k,j) are given by A205857 and A205858, and s(k) denotes the (k+1)-st Fibonacci number.

Original entry on oeis.org

1, 2, 3, 9, 7, 14, 38, 24, 62, 48, 24, 96, 164, 161, 266, 264, 257, 425, 329, 696, 682, 658, 634, 1127, 1124, 963, 1824, 1823, 2951, 2937, 2913, 2889, 2255, 4776, 4774, 4767, 4510, 7704, 12504, 12502, 12495, 12238, 7728, 20232, 20230, 20223
Offset: 1

Views

Author

Clark Kimberling, Feb 02 2012

Keywords

Comments

For a guide to related sequences, see A205840.

Examples

			The first six terms match these differences:
s(5)-s(2) = 8-2 = 6 = 6*1
s(6)-s(1) = 13-1 = 12 = 6*2
s(7)-s(3) = 21-3 = 18 = 6*3
s(9)-s(1) = 55-1 = 54 = 6*9
s(9)-s(6) = 55-13 = 42 = 6*7
s(10)-s(4) = 89-5 = 84 =6*14
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Fibonacci[n + 1]; z1 = 500; z2 = 60;
    f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2];
    Table[s[n], {n, 1, 30}]
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]   (* A204922 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = Delete[w[n], Position[w[n], 0]]
    c = 6; t = d[c]    (* A205856 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2]
    j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2
    Table[k[n], {n, 1, z2}]     (* A205857 *)
    Table[j[n], {n, 1, z2}]     (* A205858 *)
    Table[s[k[n]]-s[j[n]], {n, 1, z2}]    (* A205859 *)
    Table[(s[k[n]]-s[j[n]])/c, {n,1,z2}]  (* A205860 *)

A205865 [s(k)-s(j)]/7, where the pairs (k,j) are given by A205862 and A205863, and s(k) denotes the (k+1)-st Fibonacci number.

Original entry on oeis.org

1, 3, 6, 3, 12, 33, 52, 49, 46, 87, 86, 138, 228, 227, 141, 369, 368, 282, 141, 597, 564, 966, 1563, 1551, 2530, 2529, 2443, 2302, 2161, 4092, 4089, 4086, 4040, 6621, 6483, 10716, 10713, 10710, 10664, 6624, 17340, 17337, 17334, 17288, 13248
Offset: 1

Views

Author

Clark Kimberling, Feb 02 2012

Keywords

Comments

For a guide to related sequences, see A205840.

Examples

			The first six terms match these differences:
s(5)-s(1) = 8-1 = 7 = 7*1
s(8)-s(6) = 34-13 = 21 = 7*3
s(9)-s(6) = 55-13 = 42 = 7*6
s(9)-s(8) = 55-34 = 21 = 7*3
s(10)-s(4) = 89-5 = 84 = 7*12
s(13)-s(6) = 377-13 = 364 =7*52
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Fibonacci[n + 1]; z1 = 500; z2 = 60;
    f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2];
    Table[s[n], {n, 1, 30}]
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]  (* A204922 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = Delete[w[n], Position[w[n], 0]]
    c = 7; t = d[c]   (* A205861 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2]
    j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2
    Table[k[n], {n, 1, z2}]    (* A205862 *)
    Table[j[n], {n, 1, z2}]    (* A205863 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]  (* A205864 *)
    Table[(s[k[n]]-s[j[n]])/c, {n,1,z2}]  (* A205865 *)
Previous Showing 101-110 of 248 results. Next