cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 248 results. Next

A205386 Least k such that n divides s(k)-s(j) for some j

Original entry on oeis.org

2, 2, 3, 4, 4, 6, 3, 4, 3, 7, 7, 6, 5, 6, 7, 4, 4, 9, 7, 8, 6, 7, 10, 6, 4, 9, 6, 6, 5, 7, 11, 4, 7, 4, 7, 9, 9, 7, 8, 8, 5, 6, 15, 9, 9, 10, 13, 6, 7, 8
Offset: 1

Views

Author

Clark Kimberling, Jan 27 2012

Keywords

Comments

See A204892 for a discussion and guide to related sequences.

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = (1/2) Binomial[2 n, n]; z1 = 700; z2 = 50;
    Table[s[n], {n, 1, 30}]    (* A001700 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]     (* A205384 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]]
    Table[d[n], {n, 1, z2}]     (* A205385 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
    m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
    j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
    Table[k[n], {n, 1, z2}]        (* A205386 *)
    Table[j[n], {n, 1, z2}]        (* A205387 *)
    Table[s[k[n]], {n, 1, z2}]     (* A205388 *)
    Table[s[j[n]], {n, 1, z2}]     (* A205389 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]       (* A205390 *)
    Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}]   (* A205391 *)

A205394 Least k such that n divides s(k)-s(j) for some j

Original entry on oeis.org

2, 3, 3, 3, 5, 4, 4, 5, 8, 6, 5, 5, 6, 8, 8, 6, 6, 9, 8, 7, 10, 12, 7, 7, 10, 14, 8, 9, 11, 8, 8, 10, 9, 18, 12, 9, 10, 20, 9, 9, 15, 10, 11, 13, 10, 24, 12, 10, 10, 15, 20, 15, 11, 12, 16, 11, 14, 30, 11, 11, 22, 32, 15, 12, 18, 14, 12, 19, 26, 12, 12, 13, 14, 38, 20, 21
Offset: 1

Views

Author

Clark Kimberling, Jan 27 2012

Keywords

Comments

See A204892 for a discussion and guide to related sequences.

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Floor[(n^2 + 1)/2]; z1 = 800; z2 = 80;
    Table[s[n], {n, 1, 30}]     (* A000982 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]     (* A205392 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]]
    Table[d[n], {n, 1, z2}]     (* A205393 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
    m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
    j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
    Table[k[n], {n, 1, z2}]         (* A205394 *)
    Table[j[n], {n, 1, z2}]         (* A205395 *)
    Table[s[k[n]], {n, 1, z2}]      (* A205396 *)
    Table[s[j[n]], {n, 1, z2}]      (* A205397 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]      (* A205398 *)
    Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}]  (* A205399 *)

A205402 Least k such that n divides s(k)-s(j) for some j < k, where s(j) = floor((j+1)^2/2)/2 (quarter-squares).

Original entry on oeis.org

2, 3, 3, 4, 4, 6, 5, 5, 8, 6, 6, 7, 9, 7, 7, 8, 11, 8, 8, 11, 9, 12, 9, 9, 14, 10, 11, 10, 10, 11, 14, 11, 12, 11, 11, 12, 13, 12, 15, 12, 12, 16, 13, 14, 13, 20, 13, 13, 19, 14, 17, 14, 20, 14, 14, 16, 21, 15, 25, 15, 17, 15, 15, 19, 17, 16, 28, 16, 17, 16, 16, 17, 26
Offset: 1

Views

Author

Clark Kimberling, Jan 27 2012

Keywords

Comments

See A204892 for a discussion and guide to related sequences.

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = (1/2) Floor[(n + 1)^2/2];
    z1 = 1000; z2 = 80;
    Table[s[n], {n, 1, 30}]   (* A002620, quarter-squares *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]   (* A205400 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]]
    Table[d[n], {n, 1, z2}]   (* A205401 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
    m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
    j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
    Table[k[n], {n, 1, z2}]        (* A205402 *)
    Table[j[n], {n, 1, z2}]        (* A205403 *)
    Table[s[k[n]], {n, 1, z2}]     (* A205404 *)
    Table[s[j[n]], {n, 1, z2}]     (* A205405 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]     (* A205406 *)
    Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A198293 *)

Extensions

Name edited by Clark Kimberling, Dec 06 2021

A205442 Least k such that n divides s(k)-s(j) for some j

Original entry on oeis.org

2, 3, 3, 3, 6, 4, 5, 4, 7, 7, 4, 4, 8, 6, 11, 5, 10, 7, 6, 7, 5, 6, 13, 7, 26, 9, 19, 6, 5, 12, 9, 5, 5, 10, 21, 7, 20, 6, 15, 16, 11, 6, 23, 6, 31, 13, 9, 7, 29, 27, 19, 9, 28, 19, 6, 13, 7, 7, 16, 12
Offset: 1

Views

Author

Clark Kimberling, Jan 27 2012

Keywords

Comments

See A204892 for a discussion and guide to related sequences.

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Fibonacci[2*n - 1]; z1 = 500; z2 = 60;
    Table[s[n], {n, 1, 30}]         (* A001519 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]         (* A205371 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]]
    Table[d[n], {n, 1, z2}]         (* A205441 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
    m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
    j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
    Table[k[n], {n, 1, z2}]         (* A205442 *)
    Table[j[n], {n, 1, z2}]         (* A205443 *)
    Table[s[k[n]], {n, 1, z2}]      (* A205444 *)
    Table[s[j[n]], {n, 1, z2}]      (* A205445 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]      (* A205446 *)
    Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}]  (* A205447 *)

A205450 Least k such that n divides s(k) - s(j) for some j

Original entry on oeis.org

2, 2, 4, 4, 3, 4, 3, 6, 4, 4, 6, 8, 4, 7, 12, 9, 5, 4, 10, 4, 8, 7, 7, 8, 13, 5, 5, 9, 8, 14, 16, 15, 12, 5, 11, 12, 10, 10, 16, 9, 6, 8, 12, 16, 14, 7, 5, 12, 10, 14, 20, 5, 14, 5, 10, 9, 20, 8, 30, 32
Offset: 1

Views

Author

Clark Kimberling, Jan 27 2012

Keywords

Comments

See A204892 for a discussion and guide to related sequences.

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Fibonacci[2*n]; z1 = 500; z2 = 60;
    Table[s[n], {n, 1, 30}]     (* A001906 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]     (* A205448 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]]
    Table[d[n], {n, 1, z2}]     (* A205449 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
    m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
    j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
    Table[k[n], {n, 1, z2}]         (* A205450 *)
    Table[j[n], {n, 1, z2}]         (* A205451 *)
    Table[s[k[n]], {n, 1, z2}]      (* A205452 *)
    Table[s[j[n]], {n, 1, z2}]      (* A205453 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]      (* A205454 *)
    Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}]  (* A205455 *)

A205720 Numbers k for which 10 divides prime(k)-prime(j) for some j

Original entry on oeis.org

6, 7, 9, 9, 10, 11, 12, 12, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 17, 17, 18, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 22, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27, 27, 27, 27, 27, 27
Offset: 1

Views

Author

Clark Kimberling, Jan 31 2012

Keywords

Comments

For a guide to related sequences, see A205558.

Examples

			The first six terms match these differences:
p(6)-p(2)=13-3=10=10*1
p(7)-p(4)=17-7=10=10*1
p(9)-p(2)=23-3=20=10*2
p(9)-p(6)=23-13=10=10*1
p(10)-p(8)=29-19=10=10*1
p(11)-p(5)=31-11=20=10*2
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Prime[n]; z1 = 900; z2 = 70;
    f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2];
    Table[s[n], {n, 1, 30}]        (* A000040 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]        (* A204890 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = Delete[w[n], Position[w[n], 0]]
    c = 10; t = d[c]               (* A205718 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2]
    j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2
    Table[k[n], {n, 1, z2}]        (* A205720 *)
    Table[j[n], {n, 1, z2}]        (* A205721 *)
    Table[s[k[n]], {n, 1, z2}]     (* A205722 *)
    Table[s[j[n]], {n, 1, z2}]     (* A205723 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]     (* A205724 *)
    Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205725 *)

A205002 Least k such that n divides s(k)-s(j) for some j satisfying 1<=j

Original entry on oeis.org

2, 2, 3, 4, 3, 5, 4, 8, 4, 6, 6, 5, 7, 5, 6, 16, 9, 6, 10, 6, 8, 7, 12, 9, 7, 8, 7, 11, 15, 8, 16, 32, 8, 10, 8, 12, 19, 11, 9, 10, 21, 9, 22, 9, 10, 13, 24, 17, 10, 12, 11, 10, 27, 10, 13, 11, 12, 16, 30, 11, 31, 17, 11, 64, 11, 17, 34, 12, 14, 13, 36, 12, 37, 20, 12, 13, 12, 18, 40, 18, 13, 22, 42, 14, 13, 23, 17, 13, 45, 13, 16, 15
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

See A204892 for a discussion and guide to related sequences.

Examples

			(See example at A205001.)
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Binomial[n + 1, 2]; z1 = 500; z2 = 60;
    Table[s[n], {n, 1, 30}]  (* A000217 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]  (* A193974 ? *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = First[Delete[w[n], Position[w[n], 0]]]
    Table[d[n], {n, 1, z2}]      (* A205001 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
    m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
    j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
    Table[k[n], {n, 1, z2}]      (* A205002 *)
    Table[j[n], {n, 1, z2}]      (* A205003 *)
    Table[s[k[n]], {n, 1, z2}]   (* A205004 *)
    Table[s[j[n]], {n, 1, z2}]   (* A205005 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]     (* A205006 *)
    Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A205007 *)
  • PARI
    A205002(n) = for(k=2,oo,my(sk=binomial(k+1,2)); for(j=1,k-1,if(!((sk-binomial(j+1,2))%n),return(k)))); \\ Antti Karttunen, Sep 27 2018

Extensions

More terms from Antti Karttunen, Sep 27 2018

A205560 Numbers k for which 3 divides prime(k)-prime(j) for some j

Original entry on oeis.org

3, 5, 5, 6, 7, 7, 7, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19
Offset: 1

Views

Author

Clark Kimberling, Jan 30 2012

Keywords

Comments

For a guide to related sequences, see A205558.

Examples

			The first six terms match these differences:
p(3)-p(1)=5-2=3=3*1
p(5)-p(1)=11-2=9=3*3
p(5)-p(3)=11-5=6=3*2
p(6)-p(4)=13-7=6=3*2
p(7)-p(1)=17-2=15=3*5
p(7)-p(3)=17-5=12=3*4
		

Crossrefs

Programs

  • Maple
    R:= NULL: N[0]:= 0: N[1]:= 0: N[2]:= 0: p:= 0:
    for k from 1 to 30 do
      p:= nextprime(p);
      v:= p mod 3;
      R:= R, k$N[v];
      N[v]:= N[v]+1;
    od:
    R; # Robert Israel, Nov 18 2024
  • Mathematica
    s[n_] := s[n] = Prime[n]; z1 = 200; z2 = 80;
    f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2];
    Table[s[n], {n, 1, 30}]      (* A000040 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]      (* A204890 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = Delete[w[n], Position[w[n], 0]]
    c = 3; t = d[c]              (* A205559 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2]
    j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2
    Table[k[n], {n, 1, z2}]        (* A205560 *)
    Table[j[n], {n, 1, z2}]        (* A205547 *)
    Table[s[k[n]], {n, 1, z2}]     (* A205673 *)
    Table[s[j[n]], {n, 1, z2}]     (* A205674 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]     (* A205557 *)
    Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205675 *)

A205677 Numbers k for which 4 divides prime(k)-prime(j) for some j

Original entry on oeis.org

4, 5, 5, 6, 7, 7, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19
Offset: 1

Views

Author

Clark Kimberling, Jan 30 2012

Keywords

Comments

For a guide to related sequences, see A205558.

Examples

			The first six terms match these differences:
p(4)-p(2)=7-3=4=4*1
p(5)-p(2)=11-3=8=4*2
p(5)-p(4)=11-7=4=4*1
p(6)-p(3)=13-5=8=4*2
p(7)-p(3)=17-5=12=4*3
p(7)-p(6)=17-13=4=4*1
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Prime[n]; z1 = 200; z2 = 80;
    f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2];
    Table[s[n], {n, 1, 30}]        (* A000040 *)
    u[m_] :=  u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]        (* A204890 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = Delete[w[n], Position[w[n], 0]]
    c = 4; t = d[c]                (* A205676 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2]
    j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2
    Table[k[n], {n, 1, z2}]         (* A205677 *)
    Table[j[n], {n, 1, z2}]         (* A205678 *)
    Table[s[k[n]], {n, 1, z2}]      (* A205679 *)
    Table[s[j[n]], {n, 1, z2}]      (* A205680 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]      (* A205681 *)
    Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}]  (* A205682 *)

A205684 Numbers k for which 5 divides prime(k)-prime(j) for some j

Original entry on oeis.org

4, 6, 7, 7, 9, 9, 10, 11, 12, 12, 12, 13, 13, 14, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16, 17, 17, 18, 18, 18, 19, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 22, 23, 23, 23, 23, 23, 23, 24, 24, 24, 24, 25, 25, 25, 25, 25, 25, 26, 26, 26, 26, 26, 27
Offset: 1

Views

Author

Clark Kimberling, Jan 30 2012

Keywords

Comments

For a guide to related sequences, see A205558.

Examples

			The first six terms match these differences:
p(4)-p(1)=7-2=5=5*1
p(6)-p(2)=13-3=10=5*2
p(7)-p(1)=17-2=15=5*3
p(7)-p(4)=17-7=10=5*2
p(9)-p(2)=23-3=20=5*4
p(9)-p(6)=23-13=10=5*2
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Prime[n]; z1 = 400; z2 = 80;
    f[n_] := f[n] = Floor[(-1 + Sqrt[8 n - 7])/2];
    Table[s[n], {n, 1, 30}]        (* A000040 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j], {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]        (* A204890 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = Delete[w[n], Position[w[n], 0]]
    c = 5; t = d[c]                (* A205683 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 t[[n]] - 1])/2]
    j[n_] := j[n] = t[[n]] - f[t][[n]] (f[t[[n]]] + 1)/2
    Table[k[n], {n, 1, z2}]        (* A205684 *)
    Table[j[n], {n, 1, z2}]        (* A205685 *)
    Table[s[k[n]], {n, 1, z2}]     (* A205686 *)
    Table[s[j[n]], {n, 1, z2}]     (* A205687 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]     (* A205688 *)
    Table[(s[k[n]] - s[j[n]])/c, {n, 1, z2}] (* A205689 *)
Previous Showing 21-30 of 248 results. Next