A204892 Least k such that n divides s(k)-s(j) for some j in [1,k), where s(k)=prime(k).
2, 3, 3, 4, 4, 5, 7, 5, 5, 6, 6, 7, 10, 7, 7, 8, 8, 9, 13, 9, 9, 10, 16, 10, 16, 10, 10, 11, 11, 12, 19, 12, 20, 12, 12, 13, 22, 13, 13, 14, 14, 15, 24, 15, 15, 16, 25, 16, 26, 16, 16, 17, 29, 17, 30, 17, 17, 18, 18, 19, 31, 19, 32, 19, 19, 20, 33, 20, 20, 21
Offset: 1
Keywords
A205406 a(n) = s(k)-s(j), where (k,j) is the least pair for which n divides s(k)-s(j), and s(j) = floor((j+1)^2/2)/2.
1, 2, 3, 4, 5, 6, 7, 8, 18, 10, 11, 12, 13, 14, 15, 16, 34, 18, 19, 20, 21, 22, 23, 24, 50, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 98, 50, 51, 52, 106, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 201, 68
Offset: 1
Comments
For a guide to related sequences, see A204892.
Examples
The least k such that 9 divides s(k)-s(j) for some k is k=8, for which j=2: s(8)-s(2) = 20-2 = 18, so a(9)=18.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..12004
Programs
-
Mathematica
(See the program at A205402.) s[m_]:=s[m]=Floor[(m+1)^2/2]/2 A205406[n_]:=(k=2; found=False; While[!found, Do[If[Mod[d=s[k]-s[j], n]==0, found=True; Break[]], {j, k-1}]; k++]; d) nterms=100; Table[A205406[n], {n, nterms}] (* Paolo Xausa, Dec 03 2021 *)
-
PARI
A002620(n) = ((n^2)>>2); A002620shiftedleft(n) = A002620(1+n); A205406(n) = { my(d); for(k=2,oo, for(j=1,k-1,if(!((d=A002620shiftedleft(k)-A002620shiftedleft(j))%n),return(d)))); }; \\ Antti Karttunen, Dec 05 2021
Formula
a(n) = n * A198293(n). - Antti Karttunen, Dec 05 2021
Extensions
Definition corrected by Clark Kimberling, Dec 05 2021
A198293 a(n) = (1/n)*A205406(n).
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3
Offset: 1
Keywords
Comments
For a guide to related sequences, see A204892.
Links
- Paolo Xausa, Table of n, a(n) for n = 1..20000
Programs
-
Mathematica
(See the program at A205402.) s[m_]:=s[m]=Floor[(m+1)^2/2]/2 A205406[n_]:=(k=2;found=False;While[!found,Do[If[Mod[d=s[k]-s[j],n]==0,found=True;Break[]],{j,k-1}];k++];d) nterms=100;Table[A205406[n]/n,{n,nterms}] (* Paolo Xausa, Dec 03 2021 *)
-
PARI
A002620(n) = ((n^2)>>2); A002620shiftedleft(n) = A002620(1+n); A205406(n) = { my(d); for(k=2,oo, for(j=1,k-1,if(!((d=A002620shiftedleft(k)-A002620shiftedleft(j))%n),return(d)))); }; A198293(n) = (A205406(n)/n); \\ Antti Karttunen, Dec 03 2021
Extensions
Data section extended up to a(111) by Antti Karttunen, Dec 03 2021
A205403 a(n) is the index j < k such that n divides s(k)-s(j) for some j, where s(j) = floor((j+1)^2/2)/2, and k is the least index for which such a j exists.
1, 2, 1, 2, 1, 4, 2, 1, 2, 2, 1, 3, 6, 2, 1, 3, 2, 2, 1, 7, 3, 8, 2, 1, 4, 3, 5, 2, 1, 4, 9, 3, 5, 2, 1, 4, 6, 3, 9, 2, 1, 10, 4, 6, 3, 15, 2, 1, 2, 4, 10, 3, 3, 2, 1, 7, 15, 4, 20, 3, 8, 2, 1, 11, 7, 4, 5, 3, 6, 2, 1, 5, 11, 7, 4, 14, 3, 6, 2, 1
Offset: 1
Keywords
Comments
For a guide to related sequences, see A204892.
Programs
-
Mathematica
(See the program at A205402.)
Extensions
Definition corrected by Clark Kimberling, Dec 05 2021
A205400 Ordered differences of quarter-squares.
1, 3, 2, 5, 4, 2, 8, 7, 5, 3, 11, 10, 8, 6, 3, 15, 14, 12, 10, 7, 4, 19, 18, 16, 14, 11, 8, 4, 24, 23, 21, 19, 16, 13, 9, 5, 29, 28, 26, 24, 21, 18, 14, 10, 5, 35, 34, 32, 30, 27, 24, 20, 16, 11, 6, 41, 40, 38, 36, 33, 30, 26, 22, 17, 12, 6, 48, 47, 45, 43, 40, 37, 33
Offset: 1
Keywords
Comments
For a guide to related sequences, see A204892.
Examples
a(1)=s(2)-s(1)=2-1=1 a(2)=s(3)-s(1)=4-1=3 a(3)=s(3)-s(2)=4-2=2 a(4)=s(4)-s(1)=6-1=5 a(5)=s(4)-s(2)=6-2=4
Programs
-
Mathematica
(See the program at A205402.)
A205404 Least s(k) such that n divides s(k)-s(j) for some j < k, where s(j) = floor((j+1)^2/2)/2.
2, 4, 4, 6, 6, 12, 9, 9, 20, 12, 12, 16, 25, 16, 16, 20, 36, 20, 20, 36, 25, 42, 25, 25, 56, 30, 36, 30, 30, 36, 56, 36, 42, 36, 36, 42, 49, 42, 64, 42, 42, 72, 49, 56, 49, 110, 49, 49, 100, 56, 81, 56, 110, 56, 56, 72, 121, 64, 169, 64, 81, 64, 64, 100, 81, 72
Offset: 1
Keywords
Comments
For a guide to related sequences, see A204892.
Programs
-
Mathematica
(See the program at A205402.)
Extensions
Definition corrected by Clark Kimberling, Dec 05 2021
A205405 s(A205403), where s(j)=floor[(j+1)^2/2].
1, 2, 1, 2, 1, 6, 2, 1, 2, 2, 1, 4, 12, 2, 1, 4, 2, 2, 1, 16, 4, 20, 2, 1, 6, 4, 9, 2, 1, 6, 25, 4, 9, 2, 1, 6, 12, 4, 25, 2, 1, 30, 6, 12, 4, 64, 2, 1, 2, 6, 30, 4, 4, 2, 1, 16, 64, 6, 110, 4, 20, 2, 1, 36, 16, 6, 9, 4, 12, 2, 1, 9, 36, 16, 6, 56, 4, 12, 2, 1
Offset: 1
Keywords
Comments
For a guide to related sequences, see A204892.
Programs
-
Mathematica
(See the program at A205402.)
A205401 Least h such that n divides the h-th difference between distinct numbers quarter-squares; the differences are ordered as in A205400.
1, 3, 2, 5, 4, 14, 8, 7, 23, 12, 11, 18, 34, 17, 16, 24, 47, 23, 22, 52, 31, 63, 30, 29, 82, 39, 50, 38, 37, 49, 87, 48, 60, 47, 46, 59, 72, 58, 100, 57, 56, 115, 70, 84, 69, 186, 68, 67, 155, 82, 130, 81, 174, 80, 79, 112, 205, 95, 296, 94, 128, 93, 92, 164, 127
Offset: 1
Keywords
Comments
For a guide to related sequences, see A204892.
Programs
-
Mathematica
(See the program at A205402.)
Comments
Examples
Links
Crossrefs
Programs
Mathematica
PARI