cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A204892 Least k such that n divides s(k)-s(j) for some j in [1,k), where s(k)=prime(k).

Original entry on oeis.org

2, 3, 3, 4, 4, 5, 7, 5, 5, 6, 6, 7, 10, 7, 7, 8, 8, 9, 13, 9, 9, 10, 16, 10, 16, 10, 10, 11, 11, 12, 19, 12, 20, 12, 12, 13, 22, 13, 13, 14, 14, 15, 24, 15, 15, 16, 25, 16, 26, 16, 16, 17, 29, 17, 30, 17, 17, 18, 18, 19, 31, 19, 32, 19, 19, 20, 33, 20, 20, 21
Offset: 1

Views

Author

Clark Kimberling, Jan 20 2012

Keywords

Comments

Suppose that (s(i)) is a strictly increasing sequence in the set N of positive integers. For i in N, let r(h) be the residue of s(i+h)-s(i) mod n, for h=1,2,...,n+1. There are at most n distinct residues r(h), so that there must exist numbers h and h' such that r(h)=r(h'), where 0<=h
Corollary: for each n, there are infinitely many pairs (j,k) such that n divides s(k)-s(j), and this result holds if s is assumed unbounded, rather than strictly increasing.
Guide to related sequences:
...
s(n)=prime(n), primes
... k(n), j(n): A204892, A204893
... s(k(n)),s(j(n)): A204894, A204895
... s(k(n))-s(j(n)): A204896, A204897
s(n)=prime(n+1), odd primes
... k(n), j(n): A204900, A204901
... s(k(n)),s(j(n)): A204902, A204903
... s(k(n))-s(j(n)): A109043(?), A000034(?)
s(n)=prime(n+2), primes >=5
... k(n), j(n): A204908, A204909
... s(k(n)),s(j(n)): A204910, A204911
... s(k(n))-s(j(n)): A109043(?), A000034(?)
s(n)=prime(n)*prime(n+1) product of consecutive primes
... k(n), j(n): A205146, A205147
... s(k(n)),s(j(n)): A205148, A205149
... s(k(n))-s(j(n)): A205150, A205151
s(n)=(prime(n+1)+prime(n+2))/2: averages of odd primes
... k(n), j(n): A205153, A205154
... s(k(n)),s(j(n)): A205372, A205373
... s(k(n))-s(j(n)): A205374, A205375
s(n)=2^(n-1), powers of 2
... k(n), j(n): A204979, A001511(?)
... s(k(n)),s(j(n)): A204981, A006519(?)
... s(k(n))-s(j(n)): A204983(?), A204984
s(n)=2^n, powers of 2
... k(n), j(n): A204987, A204988
... s(k(n)),s(j(n)): A204989, A140670(?)
... s(k(n))-s(j(n)): A204991, A204992
s(n)=C(n+1,2), triangular numbers
... k(n), j(n): A205002, A205003
... s(k(n)),s(j(n)): A205004, A205005
... s(k(n))-s(j(n)): A205006, A205007
s(n)=n^2, squares
... k(n), j(n): A204905, A204995
... s(k(n)),s(j(n)): A204996, A204997
... s(k(n))-s(j(n)): A204998, A204999
s(n)=(2n-1)^2, odd squares
... k(n), j(n): A205378, A205379
... s(k(n)),s(j(n)): A205380, A205381
... s(k(n))-s(j(n)): A205382, A205383
s(n)=n(3n-1), pentagonal numbers
... k(n), j(n): A205138, A205139
... s(k(n)),s(j(n)): A205140, A205141
... s(k(n))-s(j(n)): A205142, A205143
s(n)=n(2n-1), hexagonal numbers
... k(n), j(n): A205130, A205131
... s(k(n)),s(j(n)): A205132, A205133
... s(k(n))-s(j(n)): A205134, A205135
s(n)=C(2n-2,n-1), central binomial coefficients
... k(n), j(n): A205010, A205011
... s(k(n)),s(j(n)): A205012, A205013
... s(k(n))-s(j(n)): A205014, A205015
s(n)=(1/2)C(2n,n), (1/2)*(central binomial coefficients)
... k(n), j(n): A205386, A205387
... s(k(n)),s(j(n)): A205388, A205389
... s(k(n))-s(j(n)): A205390, A205391
s(n)=n(n+1), oblong numbers
... k(n), j(n): A205018, A205028
... s(k(n)),s(j(n)): A205029, A205030
... s(k(n))-s(j(n)): A205031, A205032
s(n)=n!, factorials
... k(n), j(n): A204932, A204933
... s(k(n)),s(j(n)): A204934, A204935
... s(k(n))-s(j(n)): A204936, A204937
s(n)=n!!, double factorials
... k(n), j(n): A204982, A205100
... s(k(n)),s(j(n)): A205101, A205102
... s(k(n))-s(j(n)): A205103, A205104
s(n)=3^n-2^n
... k(n), j(n): A205000, A205107
... s(k(n)),s(j(n)): A205108, A205109
... s(k(n))-s(j(n)): A205110, A205111
s(n)=Fibonacci(n+1)
... k(n), j(n): A204924, A204925
... s(k(n)),s(j(n)): A204926, A204927
... s(k(n))-s(j(n)): A204928, A204929
s(n)=Fibonacci(2n-1)
... k(n), j(n): A205442, A205443
... s(k(n)),s(j(n)): A205444, A205445
... s(k(n))-s(j(n)): A205446, A205447
s(n)=Fibonacci(2n)
... k(n), j(n): A205450, A205451
... s(k(n)),s(j(n)): A205452, A205453
... s(k(n))-s(j(n)): A205454, A205455
s(n)=Lucas(n)
... k(n), j(n): A205114, A205115
... s(k(n)),s(j(n)): A205116, A205117
... s(k(n))-s(j(n)): A205118, A205119
s(n)=n*(2^(n-1))
... k(n), j(n): A205122, A205123
... s(k(n)),s(j(n)): A205124, A205125
... s(k(n))-s(j(n)): A205126, A205127
s(n)=ceiling[n^2/2]
... k(n), j(n): A205394, A205395
... s(k(n)),s(j(n)): A205396, A205397
... s(k(n))-s(j(n)): A205398, A205399
s(n)=floor[(n+1)^2/2]
... k(n), j(n): A205402, A205403
... s(k(n)),s(j(n)): A205404, A205405
... s(k(n))-s(j(n)): A205406, A205407

Examples

			Let s(k)=prime(k).  As in A204890, the ordering of differences s(k)-s(j), follows from the arrangement shown here:
k...........1..2..3..4..5...6...7...8...9
s(k)........2..3..5..7..11..13..17..19..23
...
s(k)-s(1)......1..3..5..9..11..15..17..21..27
s(k)-s(2).........2..4..8..10..14..16..20..26
s(k)-s(3)............2..6..8...12..14..18..24
s(k)-s(4)...............4..6...10..12..16..22
...
least (k,j) such that 1 divides s(k)-s(j) for some j is (2,1), so a(1)=2.
least (k,j) such that 2 divides s(k)-s(j): (3,2), so a(2)=3.
least (k,j) such that 3 divides s(k)-s(j): (3,1), so a(3)=3.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Prime[n]; z1 = 400; z2 = 50;
    Table[s[n], {n, 1, 30}]          (* A000040 *)
    u[m_] := u[m] = Flatten[Table[s[k] - s[j],
       {k, 2, z1}, {j, 1, k - 1}]][[m]]
    Table[u[m], {m, 1, z1}]          (* A204890 *)
    v[n_, h_] := v[n, h] = If[IntegerQ[u[h]/n], h, 0]
    w[n_] := w[n] = Table[v[n, h], {h, 1, z1}]
    d[n_] := d[n] = First[Delete[w[n],
       Position[w[n], 0]]]
    Table[d[n], {n, 1, z2}]          (* A204891 *)
    k[n_] := k[n] = Floor[(3 + Sqrt[8 d[n] - 1])/2]
    m[n_] := m[n] = Floor[(-1 + Sqrt[8 n - 7])/2]
    j[n_] := j[n] = d[n] - m[d[n]] (m[d[n]] + 1)/2
    Table[k[n], {n, 1, z2}]          (* A204892 *)
    Table[j[n], {n, 1, z2}]          (* A204893 *)
    Table[s[k[n]], {n, 1, z2}]       (* A204894 *)
    Table[s[j[n]], {n, 1, z2}]       (* A204895 *)
    Table[s[k[n]] - s[j[n]], {n, 1, z2}]     (* A204896 *)
    Table[(s[k[n]] - s[j[n]])/n, {n, 1, z2}] (* A204897 *)
    (* Program 2: generates A204892 and A204893 rapidly *)
    s = Array[Prime[#] &, 120];
    lk = Table[NestWhile[# + 1 &, 1, Min[Table[Mod[s[[#]] - s[[j]], z], {j, 1, # - 1}]] =!= 0 &], {z, 1, Length[s]}]
    Table[NestWhile[# + 1 &, 1, Mod[s[[lk[[j]]]] - s[[#]], j] =!= 0 &], {j, 1, Length[lk]}]
    (* Peter J. C. Moses, Jan 27 2012 *)
  • PARI
    a(n)=forprime(p=n+2,,forstep(k=p%n,p-1,n,if(isprime(k), return(primepi(p))))) \\ Charles R Greathouse IV, Mar 20 2013

A205406 a(n) = s(k)-s(j), where (k,j) is the least pair for which n divides s(k)-s(j), and s(j) = floor((j+1)^2/2)/2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 18, 10, 11, 12, 13, 14, 15, 16, 34, 18, 19, 20, 21, 22, 23, 24, 50, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 98, 50, 51, 52, 106, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 201, 68
Offset: 1

Author

Clark Kimberling, Jan 27 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Examples

			The least k such that 9 divides s(k)-s(j) for some k is k=8, for which j=2: s(8)-s(2) = 20-2 = 18, so a(9)=18.
		

Crossrefs

Programs

  • Mathematica
    (See the program at A205402.)
    s[m_]:=s[m]=Floor[(m+1)^2/2]/2
    A205406[n_]:=(k=2; found=False; While[!found, Do[If[Mod[d=s[k]-s[j], n]==0, found=True; Break[]], {j, k-1}]; k++]; d)
    nterms=100; Table[A205406[n], {n, nterms}] (* Paolo Xausa, Dec 03 2021 *)
  • PARI
    A002620(n) = ((n^2)>>2);
    A002620shiftedleft(n) = A002620(1+n);
    A205406(n) = { my(d); for(k=2,oo, for(j=1,k-1,if(!((d=A002620shiftedleft(k)-A002620shiftedleft(j))%n),return(d)))); }; \\ Antti Karttunen, Dec 05 2021

Formula

a(n) = n * A198293(n). - Antti Karttunen, Dec 05 2021

Extensions

Definition corrected by Clark Kimberling, Dec 05 2021

A198293 a(n) = (1/n)*A205406(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3
Offset: 1

Author

Clark Kimberling, Jan 27 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

Extensions

Data section extended up to a(111) by Antti Karttunen, Dec 03 2021

A205403 a(n) is the index j < k such that n divides s(k)-s(j) for some j, where s(j) = floor((j+1)^2/2)/2, and k is the least index for which such a j exists.

Original entry on oeis.org

1, 2, 1, 2, 1, 4, 2, 1, 2, 2, 1, 3, 6, 2, 1, 3, 2, 2, 1, 7, 3, 8, 2, 1, 4, 3, 5, 2, 1, 4, 9, 3, 5, 2, 1, 4, 6, 3, 9, 2, 1, 10, 4, 6, 3, 15, 2, 1, 2, 4, 10, 3, 3, 2, 1, 7, 15, 4, 20, 3, 8, 2, 1, 11, 7, 4, 5, 3, 6, 2, 1, 5, 11, 7, 4, 14, 3, 6, 2, 1
Offset: 1

Author

Clark Kimberling, Jan 27 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205402.)

Extensions

Definition corrected by Clark Kimberling, Dec 05 2021

A205400 Ordered differences of quarter-squares.

Original entry on oeis.org

1, 3, 2, 5, 4, 2, 8, 7, 5, 3, 11, 10, 8, 6, 3, 15, 14, 12, 10, 7, 4, 19, 18, 16, 14, 11, 8, 4, 24, 23, 21, 19, 16, 13, 9, 5, 29, 28, 26, 24, 21, 18, 14, 10, 5, 35, 34, 32, 30, 27, 24, 20, 16, 11, 6, 41, 40, 38, 36, 33, 30, 26, 22, 17, 12, 6, 48, 47, 45, 43, 40, 37, 33
Offset: 1

Author

Clark Kimberling, Jan 27 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Examples

			a(1)=s(2)-s(1)=2-1=1
a(2)=s(3)-s(1)=4-1=3
a(3)=s(3)-s(2)=4-2=2
a(4)=s(4)-s(1)=6-1=5
a(5)=s(4)-s(2)=6-2=4
		

Crossrefs

Programs

  • Mathematica
    (See the program at A205402.)

A205404 Least s(k) such that n divides s(k)-s(j) for some j < k, where s(j) = floor((j+1)^2/2)/2.

Original entry on oeis.org

2, 4, 4, 6, 6, 12, 9, 9, 20, 12, 12, 16, 25, 16, 16, 20, 36, 20, 20, 36, 25, 42, 25, 25, 56, 30, 36, 30, 30, 36, 56, 36, 42, 36, 36, 42, 49, 42, 64, 42, 42, 72, 49, 56, 49, 110, 49, 49, 100, 56, 81, 56, 110, 56, 56, 72, 121, 64, 169, 64, 81, 64, 64, 100, 81, 72
Offset: 1

Author

Clark Kimberling, Jan 27 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205402.)

Extensions

Definition corrected by Clark Kimberling, Dec 05 2021

A205405 s(A205403), where s(j)=floor[(j+1)^2/2].

Original entry on oeis.org

1, 2, 1, 2, 1, 6, 2, 1, 2, 2, 1, 4, 12, 2, 1, 4, 2, 2, 1, 16, 4, 20, 2, 1, 6, 4, 9, 2, 1, 6, 25, 4, 9, 2, 1, 6, 12, 4, 25, 2, 1, 30, 6, 12, 4, 64, 2, 1, 2, 6, 30, 4, 4, 2, 1, 16, 64, 6, 110, 4, 20, 2, 1, 36, 16, 6, 9, 4, 12, 2, 1, 9, 36, 16, 6, 56, 4, 12, 2, 1
Offset: 1

Author

Clark Kimberling, Jan 27 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205402.)

A205401 Least h such that n divides the h-th difference between distinct numbers quarter-squares; the differences are ordered as in A205400.

Original entry on oeis.org

1, 3, 2, 5, 4, 14, 8, 7, 23, 12, 11, 18, 34, 17, 16, 24, 47, 23, 22, 52, 31, 63, 30, 29, 82, 39, 50, 38, 37, 49, 87, 48, 60, 47, 46, 59, 72, 58, 100, 57, 56, 115, 70, 84, 69, 186, 68, 67, 155, 82, 130, 81, 174, 80, 79, 112, 205, 95, 296, 94, 128, 93, 92, 164, 127
Offset: 1

Author

Clark Kimberling, Jan 27 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205402.)
Showing 1-8 of 8 results.