cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-90 of 248 results. Next

A204984 a(n) = (1/n)*A204983(n).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 7, 3, 93, 1, 315, 1, 1, 1, 15, 7, 13797, 3, 3, 93, 89, 1, 41943, 315, 9709, 1, 9256395, 1, 1, 1, 31, 15, 117, 7, 1857283155, 13797, 105, 3, 25575, 3, 381, 93, 91, 89, 178481, 1, 42799, 41943, 5, 315, 84973577874915, 9709, 19065, 1, 4599, 9256395
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Cf. A023758 (when a(n)=1).

Programs

  • Mathematica
    (See the program at A204979.)
  • PARI
    a(n) = for (k=1, oo, for (j=1, k-1, my(d=2^(k-1)-2^(j-1)); if (!(d % n), return(d/n)););); \\ Michel Marcus, Sep 16 2023

Extensions

More terms from Michel Marcus, Sep 16 2023

A204985 Ordered differences of numbers 2^k for k>=1.

Original entry on oeis.org

2, 6, 4, 14, 12, 8, 30, 28, 24, 16, 62, 60, 56, 48, 32, 126, 124, 120, 112, 96, 64, 254, 252, 248, 240, 224, 192, 128, 510, 508, 504, 496, 480, 448, 384, 256, 1022, 1020, 1016, 1008, 992, 960, 896, 768, 512, 2046, 2044, 2040, 2032, 2016, 1984, 1920
Offset: 1

Views

Author

Clark Kimberling, Jan 21 2012

Keywords

Comments

A204985=2*A130328. For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A204987.)

A205014 s(k)-s(j), where (s(k),s(j)) is the least pair of central binomial coefficients for which n divides their difference.

Original entry on oeis.org

1, 4, 18, 4, 5, 18, 14, 64, 18, 50, 2508, 672, 182, 14, 3180, 64, 68, 18, 19, 3180, 672, 2508, 69, 672, 50, 182, 918, 672, 232, 3180, 520676, 64, 2508, 68, 3430, 48600, 48618, 2508, 9438, 12800, 246, 672, 115000920, 2508, 48600, 184736, 3431
Offset: 1

Views

Author

Clark Kimberling, Jan 22 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205010.)

A205031 s(k)-s(j), where (s(k),s(j)) is the least pair of oblong numbers for which n divides their difference.

Original entry on oeis.org

4, 4, 6, 4, 10, 6, 14, 8, 18, 10, 22, 24, 26, 14, 30, 16, 34, 18, 38, 40, 42, 22, 46, 24, 50, 26, 54, 28, 58, 30, 62, 32, 66, 34, 70, 36, 74, 38, 78, 40, 82, 42, 86, 44, 90, 46, 94, 48, 98, 50, 102, 52, 106, 54, 110, 112, 114, 58, 118, 60
Offset: 1

Views

Author

Clark Kimberling, Jan 22 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205018.)

A205032 a(n) = (s(k)-s(j))/n, where (s(k),s(j)) is the least pair of oblong numbers (A002378) for which n divides their difference; a(n) = (1/n)*A205031(n).

Original entry on oeis.org

4, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2
Offset: 1

Views

Author

Clark Kimberling, Jan 22 2012

Keywords

Comments

For a guide to related sequences, see A204892.
Even n such that a(n) = 2 are: 2, 12, 20, 56, 72, 132, 156, 240, 272, 380, 552, 812, 992, 1056, 1332, 1640, 1892, 2256, 2756, 3540, 3660, 4032, 4160, 4556, 5112, 5256, 6320, 6972, 7656, 7832, ... - Antti Karttunen, Nov 06 2018

Crossrefs

Programs

  • Mathematica
    (See the program at A205018.)
  • PARI
    A205032(n) = for(k=2,oo,my(sk=k*(k+1)); for(j=1,k-1,if(!((sk-((j+1)*j))%n),return((sk-((j+1)*j))/n)))); \\ Antti Karttunen, Nov 06 2018
    
  • PARI
    A205032(n) = for(k=sqrtint(n)-1,oo,my(sk=k*(k+1), d); for(j=1,k-1,d=(sk-((j+1)*j)); if(0==(d%n),return(d/n),if(dAntti Karttunen, Nov 06 2018

Extensions

Definition edited and more terms from Antti Karttunen, Nov 06 2018

A205103 k!!-j!!, where (k!!,j!!) is the least pair of double factorials for which n divides their difference.

Original entry on oeis.org

1, 2, 6, 12, 5, 6, 7, 40, 45, 40, 33, 12, 13, 14, 45, 336, 102, 90, 57, 40, 336, 42240, 46, 336, 3825, 104, 3456, 336, 645105, 90, 279, 3456, 33, 102, 840, 3456, 46065, 3838, 897, 40, 369, 336, 2026977, 42240, 45, 46, 47, 336, 10290, 9450, 102, 104
Offset: 1

Views

Author

Clark Kimberling, Jan 22 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A204982.)

A205110 s(k)-s(j), where (s(k),s(j)) is the least pair of numbers given by s(j)=3^j-2^j which n divides their difference.

Original entry on oeis.org

4, 4, 18, 4, 60, 18, 14, 64, 18, 60, 660, 60, 2054, 14, 60, 64, 646, 18, 646, 60, 210, 660, 46, 192, 600, 2054, 19170, 1848, 1586126, 60, 17112, 64, 660, 646, 210, 6300, 19166, 646, 6240, 600, 1394, 210, 508174, 660, 6300, 46, 5640, 192, 2058, 600
Offset: 1

Views

Author

Clark Kimberling, Jan 22 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205000.)

A205117 The number s(j) such that n divides s(k)-s(j), where s(j) is the j-th Lucas number and k is the least positive integer for which such a j with 0

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 4, 3, 11, 1, 7, 11, 3, 4, 3, 11, 1, 11, 47, 7, 18, 7, 1, 4, 4, 3, 47, 1, 18, 3, 843, 7, 1, 29, 18, 11, 3, 47, 4, 7, 76, 3, 4, 3, 7, 1, 29, 7, 3, 7, 11, 1, 4, 47, 47, 11, 322, 18, 76, 3
Offset: 1

Views

Author

Clark Kimberling, Jan 22 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Maple
    lucas:= gfun:-rectoproc({a(n)=a(n-1)+a(n-2),a(0)=2, a(1)=1},a(n),remember):
    f:= proc(n) local j,k,S,t;
        S:= [];
        for k from 1 do
          t:= lucas(k) mod n;
          if member(t,S,j) then return lucas(j) fi;
          S:= [op(S),t];
        od
    end proc:
    map(f, [$1..100]); # Robert Israel, Jan 21 2018
  • Mathematica
    (See the program at A205114.)

Extensions

Name corrected by Robert Israel, Jan 21 2018

A205118 s(k)-s(j), where (s(k),s(j)) is the least pair of Lucas numbers for which n divides their difference.

Original entry on oeis.org

2, 2, 3, 4, 10, 6, 7, 8, 18, 10, 11, 36, 26, 14, 15, 112, 17, 18, 76, 40, 105, 22, 46, 72, 25, 26, 2160, 28, 29, 120, 1364, 192, 198, 170, 105, 36, 518, 76, 195, 40, 123, 840, 43, 44, 315, 46, 47, 192, 196, 2200, 510, 520, 318, 2160, 275, 112, 3249, 58
Offset: 1

Views

Author

Clark Kimberling, Jan 22 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205114.)

A205126 s(k)-s(j), where (s(k),s(j)) is the least such pair for which n divides their difference, and s(j)= j*(2^(j-1)).

Original entry on oeis.org

3, 8, 3, 8, 20, 48, 28, 8, 180, 20, 11, 48, 416, 28, 180, 48, 68, 180, 76, 20, 5040, 1012, 368, 48, 2300, 416, 11232, 28, 1856, 180, 31, 160, 1023, 68, 5040, 180, 444, 76, 11232, 160, 41984, 5040, 524256, 1012, 180, 368, 188, 48, 2303, 2300, 1020
Offset: 1

Views

Author

Clark Kimberling, Jan 25 2012

Keywords

Comments

For a guide to related sequences, see A204892.

Crossrefs

Programs

  • Mathematica
    (See the program at A205122.)
Previous Showing 81-90 of 248 results. Next