cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A208622 Number of Young tableaux with 9 n-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).

Original entry on oeis.org

1, 1, 24310, 499208817, 180929760551225, 220232478504498403075, 583831478578178958083979415, 2760236523281606433215665762615849, 20535579472799243918667089350306950940643, 220381419513554767061883905294847700173775763891
Offset: 0

Views

Author

Alois P. Heinz, Feb 29 2012

Keywords

Comments

Also the number of (9*n-1)-step walks on n-dimensional cubic lattice from (1,0,...,0) to (9,9,...,9) with positive unit steps in all dimensions such that for each point (p_1,p_2,...,p_n) we have p_1<=p_2<=...<=p_n or p_1>=p_2>=...>=p_n.

Crossrefs

Row n=9 of A208615.

A208623 Number of Young tableaux with 10 n-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).

Original entry on oeis.org

1, 1, 92378, 9134237407, 23086562828397479, 233018419345522155335125, 5839732221336989894541552143065, 289238439981484950348089838682686986479, 24486860959943276912563736137263132718929372619, 3201253130570381677843084208123022632287481960289725603
Offset: 0

Views

Author

Alois P. Heinz, Feb 29 2012

Keywords

Comments

Also the number of (10*n-1)-step walks on n-dimensional cubic lattice from (1,0,...,0) to (10,10,...,10) with positive unit steps in all dimensions such that for each point (p_1,p_2,...,p_n) we have p_1<=p_2<=...<=p_n or p_1>=p_2>=...>=p_n.

Crossrefs

Row n=10 of A208615.

A208625 Number of Young tableaux with n 5-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).

Original entry on oeis.org

1, 1, 43, 6091, 1676707, 705002611, 398084427253, 279481714446151, 232075055225078521, 220232478504498403075, 233018419345522155335125, 269885243445946300409146375, 337402154959503679430701458829, 450322016526620687787013813440439
Offset: 0

Views

Author

Alois P. Heinz, Feb 29 2012

Keywords

Comments

Also the number of (5*n-1)-step walks on 5-dimensional cubic lattice from (1,0,...,0) to (n,n,...,n) with positive unit steps in all dimensions such that for each point (p_1,p_2,...,p_5) we have p_1<=p_2<=...<=p_5 or p_1>=p_2>=...>=p_5.

Crossrefs

Column k=5 of A208615.

A208626 Number of Young tableaux with n 6-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).

Original entry on oeis.org

1, 1, 133, 87781, 140422657, 396803649991, 1672481205752413, 9493821912766657291, 67887185669916054862201, 583831478578178958083979415, 5839732221336989894541552143065, 66255973840780250383847420304675775, 836422943559727759153797800333684916889
Offset: 0

Views

Author

Alois P. Heinz, Feb 29 2012

Keywords

Comments

Also the number of (6*n-1)-step walks on 6-dimensional cubic lattice from (1,0,...,0) to (n,n,...,n) with positive unit steps in all dimensions such that for each point (p_1,p_2,...,p_6) we have p_1<=p_2<=...<=p_6 or p_1>=p_2>=...>=p_6.

Crossrefs

Column k=6 of A208615.

A208627 Number of Young tableaux with n 7-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).

Original entry on oeis.org

1, 1, 430, 1386529, 13675362559, 278635710716650, 9490918987253894191, 475092942773985252468181, 32104063492616280061833179530, 2760236523281606433215665762615849, 289238439981484950348089838682686986479, 35765166865735043765208026468482106363863090
Offset: 0

Views

Author

Alois P. Heinz, Feb 29 2012

Keywords

Comments

Also the number of (7*n-1)-step walks on 7-dimensional cubic lattice from (1,0,...,0) to (n,n,...,n) with positive unit steps in all dimensions such that for each point (p_1,p_2,...,p_7) we have p_1<=p_2<=...<=p_7 or p_1>=p_2>=...>=p_7.

Crossrefs

Column k=7 of A208615.

A208628 Number of Young tableaux with n 8-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).

Original entry on oeis.org

1, 1, 1431, 23374495, 1489926719139, 231474950997766763, 67868136936393109678363, 32103240681864904236146331299, 22081439406257212482754663652213531, 20535579472799243918667089350306950940643, 24486860959943276912563736137263132718929372619
Offset: 0

Views

Author

Alois P. Heinz, Feb 29 2012

Keywords

Comments

Also the number of (8*n-1)-step walks on 8-dimensional cubic lattice from (1,0,...,0) to (n,n,...,n) with positive unit steps in all dimensions such that for each point (p_1,p_2,...,p_8) we have p_1<=p_2<=...<=p_8 or p_1>=p_2>=...>=p_8.

Crossrefs

Column k=8 of A208615.

A208629 Number of Young tableaux with n 9-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).

Original entry on oeis.org

1, 1, 4863, 414325055, 177296325559211, 219738417947792525211, 583693245266271046705306483, 2760173043757661872972723537937635, 20535540740510211632088991774438342144131, 220381419513554767061883905294847700173775763891
Offset: 0

Views

Author

Alois P. Heinz, Feb 29 2012

Keywords

Comments

Also the number of (9*n-1)-step walks on 9-dimensional cubic lattice from (1,0,...,0) to (n,n,...,n) with positive unit steps in all dimensions such that for each point (p_1,p_2,...,p_9) we have p_1<=p_2<=...<=p_9 or p_1>=p_2>=...>=p_9.

Crossrefs

Column k=9 of A208615.

A208630 Number of Young tableaux with n 10-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).

Original entry on oeis.org

1, 1, 16797, 7646034683, 22661600612752505, 232553597317851557785623, 5838544884938502473966453328313, 289232902027154515366683463668541370431, 24486820402563168156475227361324722817780058649, 3201252738588789444808668395737343564339694511133453855
Offset: 0

Views

Author

Alois P. Heinz, Feb 29 2012

Keywords

Comments

Also the number of (10*n-1)-step walks on 10-dimensional cubic lattice from (1,0,...,0) to (n,n,...,n) with positive unit steps in all dimensions such that for each point (p_1,p_2,...,p_10) we have p_1<=p_2<=...<=p_10 or p_1>=p_2>=...>=p_10.

Crossrefs

Column k=10 of A208615.
Previous Showing 11-18 of 18 results.