cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A208615 Number of Young tableaux A(n,k) with n k-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing); square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 6, 10, 1, 1, 1, 1, 15, 53, 35, 1, 1, 1, 1, 43, 491, 587, 126, 1, 1, 1, 1, 133, 6091, 25187, 7572, 462, 1, 1, 1, 1, 430, 87781, 1676707, 1725819, 109027, 1716, 1, 1, 1, 1, 1431, 1386529, 140422657, 705002611, 144558247, 1705249, 6435, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Feb 29 2012

Keywords

Comments

A(n,k) is also the number of (n*k-1)-step walks on k-dimensional cubic lattice from (1,0,...,0) to (n,n,...,n) with positive unit steps in all dimensions such that for each point (p_1,p_2,...,p_k) we have p_1<=p_2<=...<=p_k or p_1>=p_2>=...>=p_k.

Examples

			A(2,3) = 6:
  +---+      +---+      +---+      +---+      +---+      +---+
  |123|      |123|      |124|      |125|      |134|      |135|
  |456|      |654|      |356|      |346|      |256|      |246|
  +---+---+  +---+---+  +---+---+  +---+---+  +---+---+  +---+---+
  |x  |100|  |x  |100|  |x  |100|  |x  |100|  |x  |100|  |x  |100|
  | x |110|  | x |110|  | x |110|  | x |110|  |x  |200|  |x  |200|
  |  x|111|  |  x|111|  |x  |210|  |x  |210|  | x |210|  | x |210|
  |x  |211|  |  x|112|  |  x|211|  | x |220|  |  x|211|  | x |220|
  | x |221|  | x |122|  | x |221|  |  x|221|  | x |221|  |  x|221|
  |  x|222|  |x  |222|  |  x|222|  |  x|222|  |  x|222|  |  x|222|
  +---+---+  +---+---+  +---+---+  +---+---+  +---+---+  +---+---+
Square array A(n,k) begins:
  1, 1,   1,      1,         1,            1,                1, ...
  1, 1,   1,      1,         1,            1,                1, ...
  1, 1,   3,      6,        15,           43,              133, ...
  1, 1,  10,     53,       491,         6091,            87781, ...
  1, 1,  35,    587,     25187,      1676707,        140422657, ...
  1, 1, 126,   7572,   1725819,    705002611,     396803649991, ...
  1, 1, 462, 109027, 144558247, 398084427253, 1672481205752413, ...
		

Crossrefs

Rows 0+1, 2-10 give: A000012, A141351 (for n>1), A208616, A208617, A208618, A208619, A208620, A208621, A208622, A208623.
Main diagonal gives: A208631.
Antidiagonal sums give: A208729.

Programs

  • Maple
    b:= proc() option remember;
          `if`(nargs<2, 1, `if`(args[1]=args[nargs],
          `if`(args[1]=0, 1, 2* b(args[1]-1, seq(args[i], i=2..nargs))),
          `if`(args[1]>0, b(args[1]-1, seq(args[i], i=2..nargs)), 0)
              +add(`if`(args[j]>args[j-1], b(seq(args[i] -`if`(i=j, 1, 0)
                    , i=1..nargs)), 0), j=2..nargs) ))
        end:
    A:= (n, k)-> `if`(n=0 or k=0, 1, b(n-1, n$(k-1))):
    seq(seq(A(n, d-n), n=0..d), d=0..12);
  • Mathematica
    b[args__] := b[args] = If[(nargs = Length[{args}]) < 2, 1, If[First[{args}] == Last[{args}], If[First[{args}] == 0, 1, 2*b[First[{args}]-1, Sequence @@ Rest[{args}]]], If[First[{args}] > 0, b[First[{args}]-1, Sequence @@ Rest[{args}]], 0] + Sum [If[{args}[[j]] > {args}[[j-1]], b[Sequence @@ Table[{args}[[i]] - If[i == j, 1, 0], {i, 1, nargs}]], 0], {j, 2, nargs}] ] ]; a[n_, k_] := If[n == 0 || k == 0, 1, b[n-1, Sequence @@ Array[n&, k-1]]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *)
Showing 1-1 of 1 results.