cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 61-70 of 100 results. Next

A210366 Number of 2 X 2 matrices with all elements in {0,1,...,n} and determinant >=n.

Original entry on oeis.org

1, 3, 18, 61, 168, 368, 749, 1310, 2235, 3493, 5291, 7640, 10869, 14711, 19860, 26051, 33623, 42618, 53725, 66280, 81577, 98739, 118847, 141800, 168435, 197406, 231100, 268595, 310617, 356763, 409136, 465231, 528830, 597397, 673127
Offset: 0

Views

Author

Clark Kimberling, Mar 20 2012

Keywords

Comments

See A210000 for a guide to related sequences.

Crossrefs

Cf. A210000.

Programs

  • Mathematica
    a = 0; b = n; z1 = 45;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, 0, m}]
    Table[c1[n, n^2] - c1[n, n - 1], {n, 0, z1}](* A210366 *)

A210367 Number of 2 X 2 matrices with all elements in {0,1,...,n} and determinant >= 2n.

Original entry on oeis.org

1, 0, 5, 26, 83, 203, 456, 853, 1497, 2477, 3860, 5690, 8305, 11470, 15684, 20947, 27328, 35057, 44569, 55569, 68849, 84153, 101912, 122125, 146014, 172246, 202378, 236593, 274399, 316494, 364473, 416055, 473938, 537432, 607225, 683593, 767218, 857111, 955830
Offset: 0

Views

Author

Clark Kimberling, Mar 20 2012

Keywords

Comments

See A210000 for a guide to related sequences.

Examples

			a(2)=5 counts these matrices:
  2 0...2 1...2 0...2 0...2 2
  0 2...0 2...1 2...2 2...0 2
		

Crossrefs

Cf. A210000.

Programs

  • Mathematica
    a = 0; b = n; z1 = 20;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, 0, m}]
    Table[c1[n, n^2] - c1[n, 2 n - 1], {n, 0, z1}]

A210368 Number of 2 X 2 matrices with all elements in {0,1,...,n} and determinant >= 3n.

Original entry on oeis.org

1, 0, 0, 7, 35, 104, 252, 509, 997, 1688, 2751, 4175, 6240, 8872, 12324, 16639, 22196, 28668, 36931, 46332, 58184, 71524, 87183, 105334, 126524, 150233, 177448, 207751, 242948, 281139, 324739
Offset: 0

Views

Author

Clark Kimberling, Mar 20 2012

Keywords

Comments

See A210000 for a guide to related sequences.

Crossrefs

Cf. A210000.

Programs

  • Mathematica
    a = 0; b = n; z1 = 30;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, 0, m}]
    Table[c1[n, n^2] - c1[n, 3 n - 1], {n, 0, z1}]

A210375 Number of 2 X 2 matrices with all terms in {0,1,...,n} and (sum of terms) = n + 3.

Original entry on oeis.org

0, 1, 16, 44, 80, 125, 180, 246, 324, 415, 520, 640, 776, 929, 1100, 1290, 1500, 1731, 1984, 2260, 2560, 2885, 3236, 3614, 4020, 4455, 4920, 5416, 5944, 6505, 7100, 7730, 8396, 9099, 9840, 10620, 11440, 12301, 13204, 14150, 15140, 16175, 17256, 18384, 19560
Offset: 0

Views

Author

Clark Kimberling, Mar 20 2012

Keywords

Comments

A210375 is also the number of 2 X 2 matrices with all terms in {0,1,...,n} and (sum of terms) = 3*n - 3.
See A210000 for a guide to related sequences.

Crossrefs

Cf. A210000.

Programs

  • Mathematica
    a = 0; b = n; z1 = 45;
    t[n_] := t[n] = Flatten[Table[w + x + y + z, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n + 3], {n, 0, z1}]   (* A210375 *)
    Table[c[n, 3 n - 3], {n, 0, z1}] (* A210375 *)

Formula

From Colin Barker, Dec 07 2017: (Start)
G.f.: x*(1 + 12*x - 14*x^2 - 4*x^3 + 6*x^4) / (1 - x)^4.
a(n) = (-120 + 74*n + 15*n^2 + n^3) / 6 for n > 1.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 5. (End)

A210377 Number of 2 X 2 matrices with all terms in {0,1,...,n} and (sum of terms) = n + 5.

Original entry on oeis.org

0, 0, 4, 31, 80, 146, 224, 315, 420, 540, 676, 829, 1000, 1190, 1400, 1631, 1884, 2160, 2460, 2785, 3136, 3514, 3920, 4355, 4820, 5316, 5844, 6405, 7000, 7630, 8296, 8999, 9740, 10520, 11340, 12201, 13104, 14050, 15040, 16075, 17156, 18284
Offset: 0

Views

Author

Clark Kimberling, Mar 20 2012

Keywords

Comments

A210376 is also the number of 2 X 2 matrices with all terms in {0,1,...,n} and (sum of terms) = 3n - 5.
See A210000 for a guide to related sequences.

Crossrefs

Cf. A210000.

Programs

  • Mathematica
    a = 0; b = n; z1 = 45;
    t[n_] := t[n] = Flatten[Table[w + x + y + z, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n + 5], {n, 0, z1}]    (* A210377 *)
    Table[c[n, 3 n - 5], {n, 0, z1}]  (* A210377 *)

Formula

Conjectures from Colin Barker, Dec 07 2017: (Start)
G.f.: x^2*(4 + 15*x - 20*x^2 - 4*x^3 + 6*x^5) / (1 - x)^4.
a(n) = (-504 + 146*n + 21*n^2 + n^3) / 6 for n>3.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>5.
(End)

A210698 Number of 2 X 2 matrices having all terms in {1,...,n} and determinant = 0 (mod 3).

Original entry on oeis.org

1, 8, 33, 90, 209, 528, 889, 1432, 2673, 3802, 5297, 8448, 11025, 14216, 20625, 25546, 31393, 42768, 51145, 60824, 79233, 92394, 107297, 135168, 154657, 176392, 216513, 244090, 274481, 330000, 367641, 408728, 483153, 533050, 587089
Offset: 1

Views

Author

Clark Kimberling, Apr 01 2012

Keywords

Comments

A210698(n)+2*A211071(n)=n^4.
For a guide to related sequences, see A210000.

Crossrefs

Programs

  • Mathematica
    a = 1; b = n; z1 = 45;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    u[n_] := u[n] = Sum[c[n, 3 k], {k, -2*n^2, 2*n^2}]
    v[n_] := v[n] = Sum[c[n, 3 k + 1], {k, -2*n^2, 2*n^2}]
    w[n_] := w[n] = Sum[c[n, 3 k + 2], {k, -2*n^2, 2*n^2}]
    Table[u[n], {n, 1, z1}] (* A210698 *)
    Table[v[n], {n, 1, z1}] (* A211071 *)
    Table[w[n], {n, 1, z1}] (* A211071 *)
    LinearRecurrence[{1, 0, 4, -4, 0, -6, 6, 0, 4, -4, 0, -1, 1}, {1, 8, 33, 90, 209, 528, 889, 1432, 2673, 3802, 5297, 8448, 11025}, 40] (* Vincenzo Librandi, Dec 01 2016 *)
  • Python
    from _future_ import division
    def A210698(n):
        if n % 3 == 0:
            return 11*n**4//27
        elif n % 3 == 1:
            return (11*n**4 - 8*n**3 + 6*n**2 + 4*n + 14)//27
        else:
            return (11*n**4 - 16*n**3 + 24*n**2 + 32*n + 8)//27 # Chai Wah Wu, Nov 30 2016

Formula

From Chai Wah Wu, Nov 30 2016: (Start)
a(n) = a(n-1) + 4*a(n-3) - 4*a(n-4) - 6*a(n-6) + 6*a(n-7) + 4*a(n-9) - 4*a(n-10) - a(n-12) + a(n-13) for n > 13.
G.f.: x*(-x^11 - 9*x^10 - 23*x^9 - 115*x^8 - 109*x^7 - 139*x^6 - 219*x^5 - 91*x^4 - 53*x^3 - 25*x^2 - 7*x - 1)/((x - 1)^5*(x^2 + x + 1)^4).
If r = floor(n/3), s = floor((n-1)/3)+1 and t = floor((n-2)/3)+1, then:
a(n) = r^4 + 4*r^3*s + 4*r^3*t + 4*r^2*s^2 + 8*r^2*s*t + 4*r^2*t^2 + s^4 + 6*s^2*t^2 + t^4.
If n == 0 mod 3, then a(n) = 11*n^4/27.
If n == 1 mod 3, then a(n) = (11*n^4 - 8*n^3 + 6*n^2 + 4*n + 14)/27.
If n == 2 mod 3, then a(n) = (11*n^4 - 16*n^3 + 24*n^2 + 32*n + 8)/27. (End)

A211054 Number of 2 X 2 matrices having all terms in {1,...,n} and determinant n-1.

Original entry on oeis.org

0, 1, 2, 6, 11, 26, 27, 66, 57, 109, 109, 182, 129, 319, 187, 332, 360, 497, 309, 714, 397, 839, 690, 842, 571, 1456, 821, 1156, 1126, 1663, 907, 2264, 1071, 2106, 1708, 1976, 1798, 3449, 1513, 2474, 2358, 3874, 1839, 4372, 2065, 3973
Offset: 0

Views

Author

Clark Kimberling, Mar 31 2012

Keywords

Comments

For a guide to related sequences, see A210000.

Examples

			A(2) counts these matrices:
1 1.....2 1
1 2.....1 1
		

Crossrefs

Programs

  • Mathematica
    a = 1; b = n; z1 = 45;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n - 1], {n, 1, z1}]  (* A211054 *)

Extensions

Offset corrected by Chai Wah Wu, Jan 04 2017

A211055 Number of 2 X 2 matrices having all terms in {1,...,n} and determinant n+1.

Original entry on oeis.org

0, 1, 4, 9, 20, 23, 51, 55, 88, 79, 181, 121, 214, 222, 323, 227, 484, 299, 605, 488, 604, 457, 1102, 623, 902, 876, 1269, 769, 1754, 893, 1728, 1370, 1634, 1436, 2811, 1303, 2100, 1964, 3184, 1637, 3622, 1823, 3403, 3171, 3138
Offset: 1

Views

Author

Clark Kimberling, Mar 31 2012

Keywords

Comments

For a guide to related sequences, see A210000.

Crossrefs

Programs

  • Mathematica
    a = 1; b = n; z1 = 45;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n + 1], {n, 1, z1}]   (* A211055 *)

A211056 Number of 2 X 2 nonsingular matrices having all terms in {1,...,n}.

Original entry on oeis.org

0, 10, 66, 224, 576, 1210, 2290, 3936, 6352, 9722, 14322, 20304, 28080, 37834, 49922, 64704, 82624, 103898, 129170, 158640, 192944, 232554, 278050, 329680, 388368, 454522, 528770, 611680, 704192, 806490, 919890, 1044624, 1181680
Offset: 1

Views

Author

Clark Kimberling, Mar 31 2012

Keywords

Comments

A211056(n) + A134506(n) = n^4.
For a guide to related sequences, see A210000.

Crossrefs

Programs

  • Mathematica
    a = 1; b = n; z1 = 35;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, 0, m}]
    Table[c1[n, n^2] - c[n, 0], {n, 1, z1}]   (* A211059 *)
    2*%     (* A211056 *)

A211057 Number of 2 X 2 matrices having all terms in {1,...,n} and determinant in the closed interval [0,n].

Original entry on oeis.org

1, 10, 36, 91, 179, 330, 516, 802, 1150, 1615, 2119, 2873, 3595, 4558, 5653, 6967, 8245, 10020, 11642, 13846, 16053, 18524, 20944, 24393, 27405, 30924, 34637, 39035, 42961, 48396, 52906, 58687, 64326, 70457, 76722, 84824, 91318, 99045
Offset: 1

Views

Author

Clark Kimberling, Mar 31 2012

Keywords

Comments

For a guide to related sequences, see A210000.

Crossrefs

Cf. A210000.

Programs

  • Maple
    g:= proc(n) local T,S,a,b,t,i;
      T:= Vector(n^2):
      for a from 1 to n do T[a^2]:= 1 od:
      for a from 1 to n-1 do for b from a+1 to n do
        T[a*b]:= T[a*b]+2
      od od;
      S:= Vector(n^2);
      S[1]:= T[1];
      for i from 2 to n^2 do S[i]:= S[i-1]+T[i] od;
      t:= T[1]*S[n+1];
      for i from 2 to n^2-n do
        t:= t + T[i]*(S[i+n]-S[i-1])
      od;
      t+1
    end proc:
    g(1):= 1:
    map(g, [$1..40]); # Robert Israel, Sep 06 2024
  • Mathematica
    a = 1; b = n; z1 = 40;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, 0, m}]
    Table[c1[n, n], {n, 1, z1}]
Previous Showing 61-70 of 100 results. Next