cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 100 results. Next

A211062 Number of 2 X 2 matrices having all terms in {1,...,n} and determinant >= 2n.

Original entry on oeis.org

0, 0, 5, 29, 93, 235, 493, 936, 1622, 2642, 4057, 6055, 8608, 12001, 16297, 21619, 28127, 36170, 45624, 57041, 70350, 85892, 103748, 124748, 148174, 175083, 205683, 239800, 277908, 321224, 368301, 421093, 479209, 543193, 613374
Offset: 1

Views

Author

Clark Kimberling, Mar 31 2012

Keywords

Comments

For a guide to related sequences, see A210000.

Crossrefs

Cf. A210000.

Programs

  • Mathematica
    a = 1; b = n; z1 = 40;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    d[n_, m_] := d[n, m] = Sum[c[n, k], {k, 0, m}]
    Table[d[n, n^2] - d[n, 2 n - 1], {n, 1, z1}]

A211063 Number of 2 X 2 matrices having all terms in {1,...,n} and determinant >=3n.

Original entry on oeis.org

0, 0, 0, 0, 8, 38, 122, 284, 589, 1080, 1848, 2933, 4515, 6577, 9366, 12888, 17444, 22928, 29864, 37986, 48057, 59656, 73413, 89307, 108002, 129068, 153386, 180636, 212111, 246683, 286126, 329135, 378047, 431242, 490425, 555118
Offset: 0

Views

Author

Clark Kimberling, Mar 31 2012

Keywords

Comments

For a guide to related sequences, see A210000.

Crossrefs

Cf. A210000.

Programs

  • Mathematica
    a = 1; b = n; z1 = 35;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    s[n_, m_] := s[n, m] = Sum[c[n, k], {k, 1, m}]
    Table[s[n,n^2]-s[n,3n-1],{n,1,z1}] (* A211063 *)

Extensions

Offset corrected by Chai Wah Wu, Jan 10 2017

A211071 Number of 2 X 2 matrices having all terms in {1,...,n} and determinant = 1 (mod 3).

Original entry on oeis.org

0, 4, 24, 83, 208, 384, 756, 1332, 1944, 3099, 4672, 6144, 8768, 12100, 15000, 19995, 26064, 31104, 39588, 49588, 57624, 70931, 86272, 98304, 117984, 140292, 157464, 185283, 216400, 240000, 277940, 319924, 351384, 401643, 456768
Offset: 1

Views

Author

Clark Kimberling, Apr 01 2012

Keywords

Comments

Also, the number of 2 X 2 matrices having all terms in {1,...,n} and determinant = 2 (mod 3).
A210698(n) + 2*A211071(n) = n^4.
For a guide to related sequences, see A210000.

Crossrefs

Programs

  • Mathematica
    a = 1; b = n; z1 = 45;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    u[n_] := u[n] = Sum[c[n, 3 k], {k, -2*n^2, 2*n^2}]
    v[n_] := v[n] = Sum[c[n, 3 k + 1], {k, -2*n^2, 2*n^2}]
    w[n_] := w[n] = Sum[c[n, 3 k + 2], {k, -2*n^2, 2*n^2}]
    Table[u[n], {n, 1, z1}] (* A210698 *)
    Table[v[n], {n, 1, z1}] (* A211071 *)
    Table[w[n], {n, 1, z1}] (* A211071 *)
    LinearRecurrence[{1, 0, 4, -4, 0, -6, 6, 0, 4, -4, 0, -1, 1}, {0, 4, 24, 83, 208, 384, 756, 1332, 1944, 3099, 4672, 6144, 8768}, 40] (* Vincenzo Librandi, Dec 01 2016 *)
  • Python
    from _future_ import division
    def A211071(n):
        if n % 3 == 0:
            return 8*n**4//27
        elif n % 3 == 1:
            return (8*n**4 + 4*n**3 - 3*n**2 - 2*n - 7)//27
        else:
            return (8*n**4 + 8*n**3 - 12*n**2 - 16*n - 4)//27 # Chai Wah Wu, Nov 30 2016

Formula

From Chai Wah Wu, Nov 30 2016: (Start)
a(n) = a(n-1) + 4*a(n-3) - 4*a(n-4) - 6*a(n-6) + 6*a(n-7) + 4*a(n-9) - 4*a(n-10) - a(n-12) + a(n-13) for n > 13.
G.f.: -x^2*(3*x^9 + 21*x^8 + 28*x^7 + 100*x^6 + 136*x^5 + 96*x^4 + 109*x^3 + 59*x^2 + 20*x + 4)/((x - 1)^5*(x^2 + x + 1)^4).
If r = floor(n/3), s = floor((n-1)/3)+1 and t = floor((n-2)/3)+1, then:
a(n) = r^2*s^2 + 2*r^2*s*t + r^2*t^2 + 2*r*s^3 + 6*r*s^2*t + 6*r*s*t^2 + 2*r*t^3 + 2*s^3*t + 2*s*t^3.
If n == 0 mod 3, then a(n) = 8*n^4/27.
If n == 1 mod 3, then a(n) = (8*n^4 + 4*n^3 - 3*n^2 - 2*n - 7)/27.
If n == 2 mod 3, then a(n) = (8*n^4 + 8*n^3 - 12*n^2 - 16*n - 4)/27. (End)

A211140 Number of 2 X 2 matrices having all terms in {-n,...,0,...,n} and determinant n.

Original entry on oeis.org

1, 20, 92, 176, 364, 408, 880, 704, 1420, 1412, 2088, 1552, 3760, 2104, 3808, 4096, 5388, 3400, 7660, 4208, 9160, 7392, 8464, 5952, 15344, 8428, 11656, 11584, 16608, 9208, 22752, 10464, 21132, 16928, 19192, 17952
Offset: 0

Views

Author

Clark Kimberling, Apr 02 2012

Keywords

Comments

For a guide to related sequences, see A210000.
Also the number of 2 X 2 matrices having all terms in {-n,...,0,...,n} and permanent n [because #(a,b,c,d) with a,b,c,d in {-n..n} and a*d-b*c=n equals #(a,b,c,d) with a,b,c,d in {-n..n} and a*d+b*c=n. (Replace d with -d)]. - Alois P. Heinz, Jun 26 2012

Crossrefs

Cf. A210000.

Programs

  • Mathematica
    a = -n; b = n; z1 = 35;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 0, z1}]  (* A211140 *)

A211141 Number of 2 X 2 matrices having all terms in {-n,...,0,...,n} and determinant n-1.

Original entry on oeis.org

0, 33, 52, 156, 240, 492, 472, 1072, 832, 1612, 1540, 2408, 1680, 4144, 2296, 4064, 4352, 5900, 3592, 8236, 4464, 9544, 7712, 9168, 6208, 15984, 8812, 12232, 11968, 17504, 9464, 23712, 10976, 21772, 17440, 19960
Offset: 0

Views

Author

Clark Kimberling, Apr 02 2012

Keywords

Comments

For a guide to related sequences, see A210000.

Crossrefs

Cf. A210000.

Programs

  • Mathematica
    a = -n; b = n; z1 = 35;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n - 1], {n, 0, z1}]  (* A211141 *)

A211142 Number of 2 X 2 matrices having all terms in {-n,...,0,...,n} and determinant n+1.

Original entry on oeis.org

0, 4, 24, 116, 128, 408, 296, 788, 748, 1232, 888, 2488, 1312, 2568, 2664, 3860, 2352, 5652, 3032, 6864, 5320, 6456, 4520, 12152, 6356, 9264, 9000, 13288, 7392, 18440, 8520, 17556, 13576, 16032, 14216, 28612
Offset: 0

Views

Author

Clark Kimberling, Apr 03 2012

Keywords

Comments

For a guide to related sequences, see A210000.

Crossrefs

Cf. A210000.

Programs

  • Mathematica
    a = -n; b = n; z1 = 35;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n + 1], {n, 0, z1}]   (* A211142 *)
    %/4                              (* integers *)

A211143 Number of 2 X 2 matrices having all terms in {-n, ..., 0, ..., n} and determinant = n^2.

Original entry on oeis.org

1, 20, 52, 84, 132, 156, 260, 228, 356, 372, 492, 404, 804, 508, 820, 844, 964, 716, 1396, 852, 1660, 1380, 1540, 1092, 2452, 1476, 1932, 1876, 2564, 1532, 3884, 1700, 3012, 2676, 3004, 2876, 4916, 2172, 3684, 3484, 5260
Offset: 0

Views

Author

Clark Kimberling, Apr 03 2012

Keywords

Comments

For a guide to related sequences, see A210000.

Crossrefs

Cf. A210000.

Programs

  • Mathematica
    a = -n; b = n; z1 = 40;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n^2], {n, 0, z1}]         (* A211143 *)
    (1/4) Table[c[n, n^2], {n, 1, z1}]   (* integers *)

A211146 Number of 2 X 2 matrices having all terms in {-n,...,0,...,n} and 0 <= determinant <= n.

Original entry on oeis.org

1, 53, 273, 737, 1613, 2821, 4853, 7125, 10593, 14597, 19885, 25309, 33677, 41189, 51269, 62565, 76145, 88793, 106821, 122581, 144541, 166045, 189997, 212877, 246653, 275081, 308369, 343281, 384977, 421097, 472649, 513865, 567765
Offset: 0

Views

Author

Clark Kimberling, Apr 03 2012

Keywords

Comments

For a guide to related sequences, see A210000.

Crossrefs

Cf. A210000.

Programs

  • Mathematica
    a = -n; b = n; z1 = 35;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, 0, m}]
    Table[c1[n, n], {n, 0, z1}]              (* A211146 *)
    (1/4) (-1 + Table[c1[n, n], {n, 0, z1}]) (* integers *)

Extensions

Offset changed to 0 by Georg Fischer, Feb 02 2022

A211150 Number of 2 X 2 matrices having all terms in {-n,...,0,...,n} and determinant > n.

Original entry on oeis.org

4, 104, 608, 1940, 4916, 10084, 19052, 32352, 52084, 79308, 116900, 164564, 227860, 306324, 403868, 522256, 667488, 837236, 1041708, 1277060, 1553116, 1871084, 2238452, 2648836, 3121648, 3652200, 4248656, 4911312, 5656784
Offset: 1

Views

Author

Clark Kimberling, Apr 04 2012

Keywords

Comments

For a guide to related sequences, see A210000.

Crossrefs

Cf. A210000.

Programs

  • Mathematica
    a = -n; b = n; z1 = 30;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, -2*n^2, m}]
    Table[c1[n, 2*n^2] - c1[n, n], {n, 1, z1}]  (* A211150 *)
    %/4  (* integers *)

A211151 Number of 2 X 2 matrices having all terms in {-n,...,0,...,n} and determinant > n.

Original entry on oeis.org

24, 196, 784, 2304, 5324, 10964, 19756, 33772, 53496, 81396, 118452, 168324, 229964, 310132, 407964, 527644, 670888, 844896, 1045916, 1286220, 1560508, 1879548, 2244404, 2664180, 3130076, 3663856, 4260240, 4927920, 5665992
Offset: 1

Views

Author

Clark Kimberling, Apr 04 2012

Keywords

Comments

For a guide to related sequences, see A210000.

Crossrefs

Cf. A210000.

Programs

  • Mathematica
    a = -n; b = n; z1 = 30;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, -2*n^2, m}]
    Table[c1[n,2*n^2]-c1[n,n-1],{n,1,z1}] (*A211151*)
    %/4  (* integers *)
Previous Showing 71-80 of 100 results. Next