cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A380531 a(n) is the multiplicative order of -4 modulo prime(n); a(1) = 0 for completion.

Original entry on oeis.org

0, 2, 1, 6, 10, 3, 4, 18, 22, 7, 10, 9, 5, 14, 46, 13, 58, 15, 66, 70, 18, 78, 82, 22, 24, 25, 102, 106, 9, 7, 14, 130, 17, 138, 37, 30, 13, 162, 166, 43, 178, 45, 190, 48, 49, 198, 210, 74, 226, 19, 58, 238, 12, 50, 8, 262, 67, 270, 23, 70
Offset: 1

Views

Author

Jianing Song, Jun 27 2025

Keywords

Comments

a(n) divides (p-1)/4 if p = prime(n) == 1 (mod 4), since (-4)^((p-1)/4) == (+-1+-i)^(p-1) == 1 (mod p), where i^2 == -1 (mod p).

Crossrefs

Cf. A105876 (primes having primitive root -4).
Cf. bases -2..-10: A337878 (if first term 1), A380482, this sequence, A380532, A380533, A380540, A380541, A380542, A385222.

Programs

  • Mathematica
    A380531[n_] := If[n == 1, 0, MultiplicativeOrder[-4, Prime[n]]];
    Array[A380531, 100] (* Paolo Xausa, Jun 29 2025 *)
  • PARI
    a(n,{k=-4}) = my(p = prime(n)); if(k%p==0, 0, znorder(Mod(k,p)))

A380532 a(n) is the multiplicative order of -5 modulo prime(n); a(3) = 0 for completion.

Original entry on oeis.org

1, 1, 0, 3, 10, 4, 16, 18, 11, 7, 6, 36, 20, 21, 23, 52, 58, 15, 11, 10, 72, 78, 41, 44, 96, 50, 51, 53, 54, 112, 21, 130, 136, 138, 74, 150, 156, 27, 83, 172, 178, 30, 38, 192, 196, 66, 70, 111, 113, 57, 232, 238, 40, 50, 256, 131, 134, 54, 276, 140
Offset: 1

Views

Author

Jianing Song, Jun 27 2025

Keywords

Crossrefs

Cf. A105877 (primes having primitive root -5).
Cf. bases -2..-10: A337878 (if first term 1), A380482, A380531, this sequence, A380533, A380540, A380541, A380542, A385222.

Programs

  • Mathematica
    A380532[n_] := If[n == 3, 0, MultiplicativeOrder[-5, Prime[n]]];
    Array[A380532, 100] (* Paolo Xausa, Jun 29 2025 *)
  • PARI
    a(n,{k=-5}) = my(p = prime(n)); if(k%p==0, 0, znorder(Mod(k,p)))

A380533 a(n) is the multiplicative order of -6 modulo prime(n); a(1) = a(2) = 0 for completion.

Original entry on oeis.org

0, 0, 2, 1, 5, 12, 16, 18, 22, 7, 3, 4, 40, 6, 46, 13, 29, 60, 66, 70, 36, 39, 41, 88, 12, 5, 51, 53, 108, 112, 63, 65, 136, 46, 74, 75, 156, 54, 166, 86, 89, 60, 38, 96, 7, 99, 210, 111, 113, 228, 232, 34, 20, 125, 256, 262, 67, 135, 276, 56
Offset: 1

Views

Author

Jianing Song, Jun 27 2025

Keywords

Crossrefs

Cf. A105878 (primes having primitive root -6).
Cf. bases -2..-10: A337878 (if first term 1), A380482, A380531, A380532, this sequence, A380540, A380541, A380542, A385222.

Programs

  • Mathematica
    A380533[n_] := If[n < 3, 0, MultiplicativeOrder[-6, Prime[n]]];
    Array[A380533, 100] (* Paolo Xausa, Jun 29 2025 *)
  • PARI
    a(n,{k=-6}) = my(p = prime(n)); if(k%p==0, 0, znorder(Mod(k,p)))

A380540 a(n) is the multiplicative order of -7 modulo prime(n); a(4) = 0 for completion.

Original entry on oeis.org

1, 2, 4, 0, 5, 12, 16, 6, 11, 14, 30, 18, 40, 3, 46, 13, 58, 60, 33, 35, 24, 39, 82, 88, 96, 100, 102, 53, 54, 7, 63, 130, 68, 138, 37, 75, 52, 81, 166, 172, 89, 12, 5, 24, 49, 198, 105, 74, 226, 228, 116, 119, 240, 250, 256, 131, 268, 270, 69, 20
Offset: 1

Views

Author

Jianing Song, Jun 27 2025

Keywords

Crossrefs

Cf. A105879 (primes having primitive root -7).
Cf. bases -2..-10: A337878 (if first term 1), A380482, A380531, A380532, A380533, this sequence, A380541, A380542, A385222.

Programs

  • Mathematica
    A380540[n_] := If[n == 4, 0, MultiplicativeOrder[-7, Prime[n]]];
    Array[A380540, 100] (* Paolo Xausa, Jun 29 2025 *)
  • PARI
    a(n,{k=-7}) = my(p = prime(n)); if(k%p==0, 0, znorder(Mod(k,p)))

A380541 a(n) is the multiplicative order of -8 modulo prime(n); a(1) = 0 for completion.

Original entry on oeis.org

0, 1, 4, 2, 5, 4, 8, 3, 22, 28, 10, 12, 20, 7, 46, 52, 29, 20, 11, 70, 6, 26, 41, 22, 16, 100, 34, 53, 12, 28, 14, 65, 68, 23, 148, 10, 52, 27, 166, 172, 89, 60, 190, 32, 196, 66, 35, 74, 113, 76, 58, 238, 8, 25, 16, 262, 268, 90, 92, 35
Offset: 1

Views

Author

Jianing Song, Jun 27 2025

Keywords

Crossrefs

Cf. A105880 (primes having primitive root -8).
Cf. bases -2..-10: A337878 (if first term 1), A380482, A380531, A380532, A380533, A380540, this sequence, A380542, A385222.

Programs

  • Mathematica
    A380541[n_] := If[n == 1, 0, MultiplicativeOrder[-8, Prime[n]]];
    Array[A380541, 100] (* Paolo Xausa, Jun 29 2025 *)
  • PARI
    a(n,{k=-8}) = my(p = prime(n)); if(k%p==0, 0, znorder(Mod(k,p)))

Formula

a(n) = ord(-2,p)/gcd(ord(-2,p),3) for p != 2, where p = prime(n), and ord(a,m) is the multiplicative order of a modulo m. Note that ord(-2,p) = A337878(n) for n > 2.

A380542 a(n) is the multiplicative order of -9 modulo prime(n); a(2) = 0 for completion.

Original entry on oeis.org

1, 0, 1, 6, 10, 6, 8, 18, 22, 7, 30, 18, 4, 42, 46, 13, 58, 10, 22, 70, 3, 78, 82, 44, 24, 25, 34, 106, 54, 56, 126, 130, 68, 138, 37, 50, 78, 162, 166, 43, 178, 90, 190, 8, 49, 198, 210, 222, 226, 114, 116, 238, 60, 250, 128, 262, 67, 30, 138, 140
Offset: 1

Views

Author

Jianing Song, Jun 27 2025

Keywords

Crossrefs

Cf. A105881 (primes having primitive root -9).
Cf. bases -2..-10: A337878 (if first term 1), A380482, A380531, A380532, A380533, A380540, A380541, this sequence, A385222.

Programs

  • Mathematica
    A380542[n_] := If[n == 2, 0, MultiplicativeOrder[-9, Prime[n]]];
    Array[A380542, 100] (* Paolo Xausa, Jun 29 2025 *)
  • PARI
    a(n,{k=-9}) = my(p = prime(n)); if(k%p==0, 0, znorder(Mod(k,p)))

A385222 a(n) is the multiplicative order of -10 modulo prime(n); a(1) = a(3) = 0 for completion.

Original entry on oeis.org

0, 2, 0, 3, 1, 3, 16, 9, 11, 28, 30, 6, 10, 42, 23, 26, 29, 60, 66, 70, 8, 26, 82, 44, 96, 4, 17, 106, 108, 112, 21, 65, 8, 23, 148, 150, 39, 162, 83, 86, 89, 180, 190, 192, 49, 198, 15, 111, 226, 228, 232, 14, 15, 25, 256, 131, 268, 10, 138, 28
Offset: 1

Views

Author

Jianing Song, Jun 27 2025

Keywords

Crossrefs

Cf. A007348 (primes having primitive root -10).
Cf. bases -2..-10: A337878 (if first term 1), A380482, A380531, A380532, A380533, A380540, A380541, A380542, this sequence.

Programs

  • Mathematica
    A385222[n_] := If[n == 1 || n == 3, 0, MultiplicativeOrder[-10, Prime[n]]];
    Array[A385222, 100] (* Paolo Xausa, Jun 29 2025 *)
  • PARI
    a(n,{k=-10}) = my(p = prime(n)); if(k%p==0, 0, znorder(Mod(k,p)))

A372801 Order of 16 modulo the n-th prime: least k such that prime(n) divides 16^k-1.

Original entry on oeis.org

1, 1, 3, 5, 3, 2, 9, 11, 7, 5, 9, 5, 7, 23, 13, 29, 15, 33, 35, 9, 39, 41, 11, 12, 25, 51, 53, 9, 7, 7, 65, 17, 69, 37, 15, 13, 81, 83, 43, 89, 45, 95, 24, 49, 99, 105, 37, 113, 19, 29, 119, 6, 25, 4, 131, 67, 135, 23, 35, 47, 73, 51, 155, 39, 79, 15, 21, 173, 87, 22, 179
Offset: 2

Views

Author

Jianing Song, May 13 2024

Keywords

Comments

a(n) is the period of the expansion of 1/prime(n) in hexadecimal.

Crossrefs

Cf. A302141 (order of 16 mod 2n+1).

Programs

  • PARI
    a(n) = znorder(Mod(16, prime(n))).

Formula

a(n) = A014664(n)/gcd(4, A014664(n)) = A082654(n)/gcd(2, A082654(n)).
a(n) <= (prime(n) - 1)/2.

A240662 Least k such that 7^k == -1 (mod prime(n)), or 0 if no such k exists.

Original entry on oeis.org

1, 0, 2, 0, 5, 6, 8, 0, 11, 0, 0, 0, 20, 3, 0, 13, 0, 30, 33, 35, 12, 39, 0, 44, 48, 50, 0, 53, 0, 7, 63, 0, 34, 0, 37, 75, 26, 81, 0, 86, 89, 6, 5, 12, 49, 0, 105, 0, 0, 114, 58, 119, 120, 0, 128, 131, 134, 0, 69, 10, 0, 146, 0, 0, 52, 79, 55, 28, 173, 174, 16
Offset: 1

Views

Author

T. D. Noe, Apr 14 2014

Keywords

Comments

The least k, if it exists, such that prime(n) divides 7^k + 1.

Crossrefs

Cf. A211243 (order of 7 mod prime(n)).

Programs

  • Mathematica
    Table[p = Prime[n]; s = Select[Range[p/2], PowerMod[7, #, p] == p - 1 &, 1]; If[s == {}, 0, s[[1]]], {n, 100}]

Formula

a(1) = 1; for n > 1, a(n) = A211243(n)/2 if A211243(n) is even, otherwise 0.

A323376 Square array read by ascending antidiagonals: T(n,k) is the multiplicative order of the n-th prime modulo the k-th prime, or 0 if n = k, n >= 1, k >= 1.

Original entry on oeis.org

0, 1, 2, 1, 0, 4, 1, 2, 4, 3, 1, 1, 0, 6, 10, 1, 2, 4, 6, 5, 12, 1, 1, 1, 0, 5, 3, 8, 1, 2, 4, 3, 10, 4, 16, 18, 1, 1, 4, 2, 0, 12, 16, 18, 11, 1, 2, 2, 6, 10, 12, 16, 9, 11, 28, 1, 2, 4, 6, 10, 0, 16, 3, 22, 28, 5, 1, 1, 2, 3, 10, 6, 4, 3, 22, 14, 30, 36
Offset: 1

Views

Author

Jianing Song, Jan 12 2019

Keywords

Comments

The maximum element in the k-th column is prime(k) - 1. By Dirichlet's theorem on arithmetic progressions, all divisors of prime(k) - 1 occur infinitely many times in the n-th column.

Examples

			Table begins
     |  k  | 1  2  3  4   5   6   7   8   9  10  ...
   n | p() | 2  3  5  7  11  13  17  19  23  29  ...
  ---+-----+----------------------------------------
   1 |   2 | 0, 2, 4, 3, 10, 12,  8, 18, 11, 28, ...
   2 |   3 | 1, 0, 4, 6,  5,  3, 16, 18, 11, 28, ...
   3 |   5 | 1, 2, 0, 6,  5,  4, 16,  9, 22, 14, ...
   4 |   7 | 1, 1, 4, 0, 10, 12, 16,  3, 22,  7, ...
   5 |  11 | 1, 2, 1, 3,  0, 12, 16,  3, 22, 28, ...
   6 |  13 | 1, 1, 4, 2, 10,  0,  4, 18, 11, 14, ...
   7 |  17 | 1, 2, 4, 6, 10,  6,  0,  9, 22,  4, ...
   8 |  19 | 1, 1, 2, 6, 10, 12,  8,  0, 22, 28, ...
   9 |  23 | 1, 2, 4, 3,  1,  6, 16,  9 , 0,  7, ...
  10 |  29 | 1, 2, 2, 1, 10,  3, 16, 18, 11,  0, ...
  ...
		

Crossrefs

Cf. A250211.
Cf. A014664 (1st row), A062117 (2nd row), A211241 (3rd row), A211243 (4th row), A039701 (2nd column).
Cf. A226367 (lower diagonal), A226295 (upper diagonal).

Programs

  • Maple
    A:= (n, k)-> `if`(n=k, 0, (p-> numtheory[order](p(n), p(k)))(ithprime)):
    seq(seq(A(1+d-k, k), k=1..d), d=1..14);  # Alois P. Heinz, Feb 06 2019
  • Mathematica
    T[n_, k_] := If[n == k, 0, MultiplicativeOrder[Prime[n], Prime[k]]];Table[T[n, k], {n, 1, 10}, {k, 1, 10}] (* Peter Luschny, Jan 20 2019 *)
  • PARI
    T(n,k) = if(n==k, 0, znorder(Mod(prime(n), prime(k))))

Formula

T(n,k) = A250211(prime(n), prime(k)).
Previous Showing 11-20 of 20 results.