cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A218259 a(n) = |{m : multiplicative order of n mod m = 10}|.

Original entry on oeis.org

0, 5, 16, 38, 47, 40, 66, 84, 150, 33, 72, 10, 106, 178, 168, 140, 265, 54, 534, 106, 68, 20, 296, 56, 564, 231, 732, 52, 730, 26, 604, 114, 80, 164, 348, 332, 297, 50, 912, 84, 904, 110, 88, 130, 222, 552, 332, 76, 1430, 81, 702, 236, 950, 178, 256, 168, 564
Offset: 1

Views

Author

Alois P. Heinz, Oct 24 2012

Keywords

Crossrefs

Row n=10 of A212957.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(10/d) *tau(n^d-1), d={1, 2, 5, 10}):
    seq(a(n), n=1..80);
  • Mathematica
    a[n_] := Total[{1, -1, -1, 1} * DivisorSigma[0, n^{10, 5, 2, 1} - 1]]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jan 25 2025*)
  • PARI
    a(n) = if(n == 1, 0, numdiv(n^10-1) - numdiv(n^5-1) - numdiv(n^2-1) + numdiv(n-1)); \\ Amiram Eldar, Jan 25 2025

Formula

a(n) = tau(n^10-1)-tau(n^5-1)-tau(n^2-1)+tau(n-1), with tau = A000005.

A252760 Number of moduli m such that the multiplicative order of n mod m equals n.

Original entry on oeis.org

0, 1, 2, 4, 9, 10, 12, 72, 112, 33, 12, 212, 42, 22, 108, 96, 35, 456, 6, 1912, 714, 220, 60, 5364, 4032, 747, 448, 3944, 762, 24370, 8, 5376, 738, 8148, 996, 253568, 1143, 242, 980, 46032, 248, 65138, 56, 23004, 195768, 282, 28, 386736, 327520, 12102, 24366
Offset: 1

Views

Author

Alois P. Heinz, Dec 21 2014

Keywords

Crossrefs

Main diagonal of A212957.

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(n/d)*tau(n^d-1), d=divisors(n)):
    seq(a(n), n=1..30);
  • Mathematica
    a[n_] := DivisorSum[n, MoebiusMu[n/#]*DivisorSigma[0, n^#-1]&]; a[1] = 0;
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 46}] (* Jean-François Alcover, Mar 25 2017, translated from Maple *)
  • PARI
    a(n) = if (n==1, 1, sumdiv(n, d, moebius(n/d)*numdiv(n^d-1))); \\ Michel Marcus, Mar 25 2017

Formula

a(n) = |{m : multiplicative order of n mod m = n}|.
a(n) = Sum_{d|n} mu(n/d)*tau(n^d-1), mu = A008683, tau = A000005.
Previous Showing 21-22 of 22 results.