A213098
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^6)^2.
Original entry on oeis.org
1, 1, 2, 11, 56, 401, 2960, 23909, 199324, 1704937, 14871560, 131002444, 1162055526, 10330588405, 91813523884, 814261196562, 7195489202430, 63317110066321, 554812081610114, 4845145547265182, 42242647963009666, 368598374017590156, 3228911122031762918
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 56*x^4 + 401*x^5 + 2960*x^6 +...
Related expansions:
A(x)^6 = 1 + 6*x + 27*x^2 + 146*x^3 + 861*x^4 + 5772*x^5 + 42206*x^6 +...
A(-x*A(x)^6)^2 = 1 - 2*x - 7*x^2 - 20*x^3 - 172*x^4 - 1202*x^5 - 9766*x^6 -...
Cf.
A000108,
A001764,
A002293,
A213091,
A213092,
A213093,
A213094,
A213095,
A213096,
A213099,
A213100,
A213101,
A213102,
A213103,
A213104,
A213105.
-
m = 23; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^6]^2 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^2,x,-x*subst(A^6,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213099
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^7)^3.
Original entry on oeis.org
1, 1, 3, 18, 112, 909, 7833, 74603, 740541, 7656219, 81187518, 878435208, 9647220024, 107137240686, 1199914011387, 13521738420240, 153051832116378, 1737562815056865, 19762347822563532, 224970273310192579, 2561375647064514444, 29149168085832027732
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 112*x^4 + 909*x^5 + 7833*x^6 +...
Related expansions:
A(x)^7 = 1 + 7*x + 42*x^2 + 287*x^3 + 2079*x^4 + 16611*x^5 + 142702*x^6 +...
A(-x*A(x)^7)^3 = 1 - 3*x - 9*x^2 - 31*x^3 - 318*x^4 - 2586*x^5 - 25969*x^6 -...
Cf.
A000108,
A001764,
A002293,
A002294,
A213091,
A213092,
A213093,
A213094,
A213095,
A213096,
A213098,
A213100,
A213101,
A213102,
A213103,
A213104,
A213105.
-
m = 22; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^7]^3 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^3,x,-x*subst(A^7,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213100
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^9)^3.
Original entry on oeis.org
1, 1, 3, 24, 181, 1893, 20601, 245176, 3018669, 38198478, 493218343, 6441378129, 84807054552, 1120545910725, 14820493111536, 195812569428897, 2580287366558579, 33878771120862777, 443012040333754728, 5770422757461475027, 74931929672784252306
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 24*x^3 + 181*x^4 + 1893*x^5 + 20601*x^6 +...
Related expansions:
A(x)^9 = 1 + 9*x + 63*x^2 + 516*x^3 + 4563*x^4 + 45207*x^5 + 486579*x^6 +...
A(-x*A(x)^9)^3 = 1 - 3*x - 15*x^2 - 64*x^3 - 798*x^4 - 8277*x^5 - 99411*x^6 -...
Cf.
A000108,
A001764,
A002293,
A002294,
A213091,
A213092,
A213093,
A213094,
A213095,
A213096,
A213098,
A213099,
A213101,
A213102,
A213103,
A213104,
A213105.
-
m = 21; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^9]^3 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^3,x,-x*subst(A^9,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213105
G.f. satisfies: A(x) = 1 + x/A(-x*A(x)^12)^6.
Original entry on oeis.org
1, 1, 6, 57, 614, 7716, 104322, 1529385, 23689968, 385885521, 6531397090, 114147452526, 2045979734964, 37435147640010, 696431496524796, 13134442980269397, 250527556214516892, 4824098879117797749, 93639919777995946446, 1830133457257882605430
Offset: 0
G.f.: A(x) = 1 + x + 6*x^2 + 57*x^3 + 614*x^4 + 7716*x^5 + 104322*x^6 +...
Related expansions:
A(x)^12 = 1 + 12*x + 138*x^2 + 1696*x^3 + 21723*x^4 + 292836*x^5 +...
A(-x*A(x)^12)^6 = 1 - 6*x - 21*x^2 - 146*x^3 - 1959*x^4 - 25056*x^5 -...
-
m = 20; A[] = 1; Do[A[x] = 1 + x/A[-x A[x]^12]^6 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Nov 06 2019 *)
-
{a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+x/subst(A^6,x,-x*subst(A^12,x,x+x*O(x^n))) );polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A213225
G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^4)).
Original entry on oeis.org
1, 1, 2, 6, 20, 76, 313, 1375, 6337, 30243, 148129, 739172, 3737993, 19077868, 97955307, 504707999, 2604312205, 13436676965, 69229324721, 355854322633, 1823672937884, 9314227843463, 47406130512872, 240498260267049, 1216833204738419, 6146116088495029, 31030233400282749
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 20*x^4 + 76*x^5 + 313*x^6 +...
Related expansions:
A(x)^4 = 1 + 4*x + 14*x^2 + 52*x^3 + 201*x^4 + 816*x^5 + 3468*x^6 +...
1/A(-x*A(x)^4) = 1 + x + 3*x^2 + 9*x^3 + 35*x^4 + 146*x^5 + 656*x^6 +...
-
terms = 26; A[] = 1; Do[A[x] = 1/(1-x/A[-x*A[x]^4]) + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Stefano Spezia, Aug 23 2025 *)
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A, x, -x*subst(A^4, x, x+x*O(x^n)))) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
A213226
G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^5)).
Original entry on oeis.org
1, 1, 2, 7, 27, 122, 607, 3208, 17688, 99803, 571238, 3292738, 19001315, 109303307, 624615928, 3537913240, 19843769848, 110273489737, 608712132055, 3355449334452, 18624818099047, 105191779542849, 610586100129734, 3662333209225714, 22652502251884322
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 27*x^4 + 122*x^5 + 607*x^6 +...
Related expansions:
A(x)^5 = 1 + 5*x + 20*x^2 + 85*x^3 + 380*x^4 + 1801*x^5 + 9045*x^6 +...
1/A(-x*A(x)^5) = 1 + x + 4*x^2 + 14*x^3 + 66*x^4 + 336*x^5 + 1805*x^6 +...
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A, x, -x*subst(A^5, x, x+x*O(x^n)))) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
A213228
G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^6)^2).
Original entry on oeis.org
1, 1, 3, 14, 73, 440, 2862, 19991, 146939, 1125413, 8896018, 72067978, 595097838, 4987609871, 42290465703, 361845473658, 3117830204185, 27009650432888, 234932107635587, 2049479335366836, 17915253987741538, 156799716352350344, 1373180896765862962
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 14*x^3 + 73*x^4 + 440*x^5 + 2862*x^6 +...
Related expansions:
A(x)^6 = 1 + 6*x + 33*x^2 + 194*x^3 + 1188*x^4 + 7656*x^5 + 51583*x^6 +...
1/A(-x*A(x)^6)^2 = 1 + 2*x + 9*x^2 + 44*x^3 + 268*x^4 + 1750*x^5 + 12422*x^6 +...
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A^2, x, -x*subst(A^6, x, x+x*O(x^n)))) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
A213229
G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^7)^2).
Original entry on oeis.org
1, 1, 3, 16, 93, 649, 4924, 40221, 344817, 3058115, 27798895, 257009431, 2404734586, 22679499148, 214947515333, 2042353663088, 19417906390395, 184458621283607, 1748712359825873, 16530801697256737, 155736745914813741, 1461877902947680987, 13674142992787617967
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 16*x^3 + 93*x^4 + 649*x^5 + 4924*x^6 +...
Related expansions:
A(x)^7 = 1 + 7*x + 42*x^2 + 273*x^3 + 1862*x^4 + 13531*x^5 + 104062*x^6 +...
1/A(-x*A(x)^7)^2 = 1 + 2*x + 11*x^2 + 60*x^3 + 431*x^4 + 3302*x^5 + 27421*x^6 +..
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A^2, x, -x*subst(A^7, x, x+x*O(x^n)))) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
A213230
G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^8)^2).
Original entry on oeis.org
1, 1, 3, 18, 115, 902, 7722, 70784, 678251, 6670586, 66851992, 677328214, 6903177354, 70490174298, 718856047396, 7304677030708, 73837797474235, 741722190452840, 7402780597473820, 73459355234486763, 726095774886910232, 7170907377415662763, 71063833561266044578
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 18*x^3 + 115*x^4 + 902*x^5 + 7722*x^6 +...
Related expansions:
A(x)^8 = 1 + 8*x + 52*x^2 + 368*x^3 + 2754*x^4 + 22112*x^5 + 189344*x^6 +...
1/A(-x*A(x)^8)^2 = 1 + 2*x + 13*x^2 + 78*x^3 + 634*x^4 + 5488*x^5 + 50969*x^6 +...
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A^2, x, -x*subst(A^8, x, x+x*O(x^n)))) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
A213231
G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^8)^3).
Original entry on oeis.org
1, 1, 4, 25, 176, 1431, 12526, 117850, 1167446, 12080563, 129326575, 1422908670, 15999766613, 183070661566, 2124252427416, 24929036429880, 295250330398281, 3523043486823439, 42294807342916249, 510274778010082846, 6181011777164665559, 75112032752942278141
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 25*x^3 + 176*x^4 + 1431*x^5 + 12526*x^6 +...
Related expansions:
A(x)^8 = 1 + 8*x + 60*x^2 + 480*x^3 + 3998*x^4 + 34968*x^5 + 318888*x^6 +...
1/A(-x*A(x)^8)^3 = 1 + 3*x + 18*x^2 + 121*x^3 + 987*x^4 + 8646*x^5 + 82244*x^6 +...
-
{a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A^3, x, -x*subst(A^8, x, x+x*O(x^n)))) ); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
Comments