cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-17 of 17 results.

A213231 G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^8)^3).

Original entry on oeis.org

1, 1, 4, 25, 176, 1431, 12526, 117850, 1167446, 12080563, 129326575, 1422908670, 15999766613, 183070661566, 2124252427416, 24929036429880, 295250330398281, 3523043486823439, 42294807342916249, 510274778010082846, 6181011777164665559, 75112032752942278141
Offset: 0

Views

Author

Paul D. Hanna, Jun 06 2012

Keywords

Comments

Compare g.f. to:
(1) G(x) = 1/(1 - x/G(-x*G(x)^3)^1) when G(x) = 1/(1 - x*G(x)^1) (A000108).
(2) G(x) = 1/(1 - x/G(-x*G(x)^5)^2) when G(x) = 1/(1 - x*G(x)^2) (A001764).
(3) G(x) = 1/(1 - x/G(-x*G(x)^7)^3) when G(x) = 1/(1 - x*G(x)^3) (A002293).
(4) G(x) = 1/(1 - x/G(-x*G(x)^9)^4) when G(x) = 1/(1 - x*G(x)^4) (A002294).

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 25*x^3 + 176*x^4 + 1431*x^5 + 12526*x^6 +...
Related expansions:
A(x)^8 = 1 + 8*x + 60*x^2 + 480*x^3 + 3998*x^4 + 34968*x^5 + 318888*x^6 +...
1/A(-x*A(x)^8)^3 = 1 + 3*x + 18*x^2 + 121*x^3 + 987*x^4 + 8646*x^5 + 82244*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A^3, x, -x*subst(A^8, x, x+x*O(x^n)))) ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

A213232 G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^9)^3).

Original entry on oeis.org

1, 1, 4, 28, 215, 1983, 19789, 213698, 2426851, 28661509, 348287354, 4322627557, 54508747790, 695534616050, 8953637420349, 116002300640637, 1509724588732027, 19707310304585212, 257698683361191598, 3372154116182404890, 44121356408759264549
Offset: 0

Views

Author

Paul D. Hanna, Jun 06 2012

Keywords

Comments

Compare g.f. to:
(1) G(x) = 1/(1 - x/G(-x*G(x)^3)^1) when G(x) = 1/(1 - x*G(x)^1) (A000108).
(2) G(x) = 1/(1 - x/G(-x*G(x)^5)^2) when G(x) = 1/(1 - x*G(x)^2) (A001764).
(3) G(x) = 1/(1 - x/G(-x*G(x)^7)^3) when G(x) = 1/(1 - x*G(x)^3) (A002293).
(4) G(x) = 1/(1 - x/G(-x*G(x)^9)^4) when G(x) = 1/(1 - x*G(x)^4) (A002294).

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 28*x^3 + 215*x^4 + 1983*x^5 + 19789*x^6 +...
Related expansions:
A(x)^9 = 1 + 9*x + 72*x^2 + 624*x^3 + 5661*x^4 + 54621*x^5 + 555837*x^6 +...
1/A(-x*A(x)^9)^3 = 1 + 3*x + 21*x^2 + 154*x^3 + 1446*x^4 + 14511*x^5 + 158838*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A^3, x, -x*subst(A^9, x, x+x*O(x^n)))) ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

A213233 G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^10)^4).

Original entry on oeis.org

1, 1, 5, 39, 345, 3512, 38431, 451620, 5587237, 72275004, 968509140, 13361356169, 188704259571, 2716467168169, 39716842554828, 588125693790055, 8800638181341593, 132838773216409675, 2019626662710709088, 30891440565153652705, 474899505740289874276
Offset: 0

Views

Author

Paul D. Hanna, Jun 06 2012

Keywords

Comments

Compare g.f. to:
(1) G(x) = 1/(1 - x/G(-x*G(x)^3)^1) when G(x) = 1/(1 - x*G(x)^1) (A000108).
(2) G(x) = 1/(1 - x/G(-x*G(x)^5)^2) when G(x) = 1/(1 - x*G(x)^2) (A001764).
(3) G(x) = 1/(1 - x/G(-x*G(x)^7)^3) when G(x) = 1/(1 - x*G(x)^3) (A002293).
(4) G(x) = 1/(1 - x/G(-x*G(x)^9)^4) when G(x) = 1/(1 - x*G(x)^4) (A002294).

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 39*x^3 + 345*x^4 + 3512*x^5 + 38431*x^6 +...
Related expansions:
A(x)^10 = 1 + 10*x + 95*x^2 + 960*x^3 + 10095*x^4 + 111212*x^5 +...
1/A(-x*A(x)^10)^4 = 1 + 4*x + 30*x^2 + 256*x^3 + 2605*x^4 + 28484*x^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A^4, x, -x*subst(A^10, x, x+x*O(x^n)))) ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

A213227 G.f. satisfies: A(x) = 1/(1 - x/A(-x*A(x)^6)).

Original entry on oeis.org

1, 1, 2, 8, 35, 181, 1042, 6301, 39435, 249744, 1585386, 10027385, 62696192, 385398251, 2322152120, 13727653882, 80274175978, 472701550856, 2883417403654, 18796497074750, 132728456810968, 995480740265410, 7605881152587204, 56821415293287735, 403362682583930224
Offset: 0

Views

Author

Paul D. Hanna, Jun 06 2012

Keywords

Comments

Compare g.f. to:
(1) G(x) = 1/(1 - x/G(-x*G(x)^3)^1) when G(x) = 1/(1 - x*G(x)^1) (A000108).
(2) G(x) = 1/(1 - x/G(-x*G(x)^5)^2) when G(x) = 1/(1 - x*G(x)^2) (A001764).
(3) G(x) = 1/(1 - x/G(-x*G(x)^7)^3) when G(x) = 1/(1 - x*G(x)^3) (A002293).
(4) G(x) = 1/(1 - x/G(-x*G(x)^9)^4) when G(x) = 1/(1 - x*G(x)^4) (A002294).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 35*x^4 + 181*x^5 + 1042*x^6 +...
Related expansions:
A(x)^6 = 1 + 6*x + 27*x^2 + 128*x^3 + 645*x^4 + 3462*x^5 + 19823*x^6 +...
1/A(-x*A(x)^6) = 1 + x + 5*x^2 + 20*x^3 + 108*x^4 + 638*x^5 + 3889*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x/subst(A, x, -x*subst(A^6, x, x+x*O(x^n)))) ); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

A384617 E.g.f. A(x) satisfies A(x) = exp( x/A(-x*A(x))^2 ).

Original entry on oeis.org

1, 1, 5, 13, -63, -2279, -51167, -423387, 13717889, 885044593, 37051519041, 779965433149, -14179999608959, -2798466635425239, -224720509492366495, -11148988922254048619, -300176114650473574143, 18804123010954180467937, 4351564646569010083711105
Offset: 0

Views

Author

Seiichi Manyama, Jun 10 2025

Keywords

Crossrefs

Column k=1 of A384808.
Cf. A213108.

Programs

  • PARI
    a(n, k=-1) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, (-n+j+k)^(j-1)*binomial(n, j)*a(n-j, 2*j)));

Formula

See A384808.

A384809 E.g.f. A(x) satisfies A(x) = exp( x/A(-x*A(x)^2)^2 ).

Original entry on oeis.org

1, 1, 5, 25, 153, -799, -82787, -2990343, -98020367, -2473062911, -22379003019, 3535310560409, 426542722323721, 33942691393940577, 2320589389274335117, 131491185267395291641, 4583444982950062321377, -254657491559719266483967, -86887910247671284788294683
Offset: 0

Views

Author

Seiichi Manyama, Jun 10 2025

Keywords

Crossrefs

Column k=1 of A384811.

Programs

  • PARI
    a(n, k=-1) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, (-2*n+2*j+k)^(j-1)*binomial(n, j)*a(n-j, 2*j)));

Formula

See A384811.

A384810 E.g.f. A(x) satisfies A(x) = exp( x/A(-x*A(x)^3)^2 ).

Original entry on oeis.org

1, 1, 5, 37, 417, 4761, 33313, -1509339, -135791359, -8149132943, -455269648959, -24532196772291, -1260399381304511, -56411711489070807, -1357347436103060191, 146282852689561868821, 35003916010171558562817, 5112183093788001812407521, 647998390863196992450043777
Offset: 0

Views

Author

Seiichi Manyama, Jun 10 2025

Keywords

Crossrefs

Column k=1 of A384813.

Programs

  • PARI
    a(n, k=-1) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, (-3*n+3*j+k)^(j-1)*binomial(n, j)*a(n-j, 2*j)));

Formula

See A384813.
Previous Showing 11-17 of 17 results.